CS11-747 Neural Networks for NLP

A Simple (?) Exercise: Predicting the Next Word

Graham Neubig

Carnegie Mellon University
Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2017/
Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.
Calculating the Probability of a Sentence

\[P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \ldots, x_{i-1}) \]

The big problem: How do we predict

\[P(x_i \mid x_1, \ldots, x_{i-1}) \]

?!?!
Review: Count-based Language Models
Count-based Language Models

• Count up the frequency and divide:

\[P_{ML}(x_i \mid x_{i-n+1}, \ldots, x_{i-1}) := \frac{c(x_{i-n+1}, \ldots, x_i)}{c(x_{i-n+1}, \ldots, x_{i-1})} \]

• Add smoothing, to deal with zero counts:

\[P(x_i \mid x_{i-n+1}, \ldots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \ldots, x_{i-1}) + (1 - \lambda) P(x_i \mid x_{1-n+2}, \ldots, x_{i-1}) \]

• Modified Kneser-Ney smoothing
A Refresher on Evaluation

• Log-likelihood:
\[LL(\mathcal{E}_{test}) = \sum_{E \in \mathcal{E}_{test}} \log P(E) \]

• Per-word Log Likelihood:
\[WLL(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} \log P(E) \]

• Per-word (Cross) Entropy:
\[H(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} - \log_2 P(E) \]

• Perplexity:
\[ppl(\mathcal{E}_{test}) = 2^{H(\mathcal{E}_{test})} = e^{-WLL(\mathcal{E}_{test})} \]
What Can we Do w/ LMs?

• Score sentences:

 Jane went to the store . → high
 store to Jane went the . → low

 (same as calculating loss for training)

• Generate sentences:

 while didn’t choose end-of-sentence symbol:
 calculate probability
 sample a new word from the probability distribution
Problems and Solutions?

• Cannot share strength among similar words

 she bought a car she bought a bicycle
 she purchased a car she purchased a bicycle

 → solution: class based language models

• Cannot condition on context with intervening words

 Dr. Jane Smith Dr. Gertrude Smith

 → solution: skip-gram language models

• Cannot handle long-distance dependencies

 for tennis class he wanted to buy his own racquet
 for programming class he wanted to buy his own computer

 → solution: cache, trigger, topic, syntactic models, etc.
An Alternative: Featurized Log-Linear Models
An Alternative:
Featurized Models

- Calculate features of the context
- Based on the features, calculate probabilities
- Optimize feature weights using gradient descent, etc.
Example:

Previous words: “giving a"

<table>
<thead>
<tr>
<th>Words we’re predicting</th>
<th>How likely are they?</th>
<th>How likely are they given prev. word is “a”?</th>
<th>How likely are they given 2nd prev. word is “giving”?</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>\begin{pmatrix} 3.0 \ 2.5 \ -0.2 \ 0.1 \ 1.2 \end{pmatrix}</td>
<td>\begin{pmatrix} -6.0 \ -5.1 \ 0.2 \ 0.1 \ 0.5 \end{pmatrix}</td>
<td>\begin{pmatrix} -0.2 \ -0.3 \ 1.0 \ 2.0 \ -1.2 \end{pmatrix}</td>
<td>\begin{pmatrix} -3.2 \ -2.9 \ 1.0 \ 2.2 \ 0.6 \end{pmatrix}</td>
</tr>
</tbody>
</table>
Softmax

- Convert scores into probabilities by taking the exponent and normalizing (softmax)

\[
P(x_i \mid x_{i-n+1}^{i-1}) = \frac{e^{s(x_i \mid x_{i-n+1}^{i-1})}}{\sum \tilde{x}_i e^{s(\tilde{x}_i \mid x_{i-n+1}^{i-1})}}
\]

\[
s = \begin{pmatrix}
-3.2 \\
-2.9 \\
1.0 \\
2.2 \\
0.6 \\
\ldots
\end{pmatrix}
\]

\[
p = \begin{pmatrix}
0.002 \\
0.003 \\
0.329 \\
0.444 \\
0.090 \\
\ldots
\end{pmatrix}
\]
A Computation Graph View

giving

lookup2 lookup1

bias

scores

= probs

Each vector is size of output vocabulary
A Note: “Lookup”

• Lookup can be viewed as “grabbing” a single vector from a big matrix of word embeddings:

\[
\text{num. words} \quad \begin{pmatrix}
\text{vector size} \\
\end{pmatrix}
\]

\[
\text{lookup(2)}
\]

• Similarly, can be viewed as multiplying by a “one-hot” vector:

\[
\begin{pmatrix}
0 \\
0 \\
1 \\
0 \\
0 \\
\end{pmatrix}
\]

\[
\times
\]

• Former tends to be faster.
Training a Model

• **Reminder:** to train, we calculate a “loss function” (a measure of how bad our predictions are), and move the parameters to reduce the loss.

• The most common loss function for probabilistic models is “negative log likelihood”:

\[
p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \\ \ldots \end{pmatrix}
\]

If element 3 (or zero-indexed, 2) is the correct answer:

\[
-\log 1.12 = 1.112
\]
Parameter Update

• Back propagation allows us to calculate the derivative of the loss with respect to the parameters $\frac{\partial l}{\partial \theta}$

• Simple stochastic gradient descent optimizes parameters according to the following rule

$$\theta \leftarrow \theta - \alpha \frac{\partial l}{\partial \theta}$$
Choosing a Vocabulary
Unknown Words

• Necessity for UNK words
 • We won’t have all the words in the world in training data
 • Larger vocabularies require more memory and computation time

• Common ways:
 • Frequency threshold (usually UNK <= 1)
 • Rank threshold
Evaluation and Vocabulary

• **Important:** the vocabulary must be the same over models you compare

• Or more accurately, all models must be able to generate the test set (it’s OK if they can generate more than the test set, but not less)

• e.g. Comparing a character-based model to a word-based model is fair, but not vice-versa
Let’s try it out!
(loglin-lm.py)
What Problems are Handled?

• Cannot share strength among **similar words**

 | she bought a **car** | she bought a **bicycle** |
 | she purchased a **car** | she purchased a **bicycle** |

→ not solved yet 😞

• Cannot condition on context with **intervening words**

 | Dr. Jane **Smith** | Dr. Gertrude **Smith** |

→ solved! 😊

• Cannot handle **long-distance dependencies**

 | for **tennis** class he wanted to buy his own **racquet** |
 | for **programming** class he wanted to buy his own **computer** |

→ not solved yet 😞
Beyond Linear Models
Linear Models can’t Learn Feature Combinations

- These can’t be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for “farmers eat”, “cows eat”)
 → Feature space explosion!
- Neural nets
Neural Language Models

• (See Bengio et al. 2004)

giving a

lookup lookup

tanh($W_1h + b_1$)

W $+$ bias scores = softmax probs
Where is Strength Shared?

Word embeddings: Similar input words get similar vectors

Similar output words get similar rows in the softmax matrix

Similar contexts get similar hidden states

\[
tanh(W_1 \cdot h + b_1) + \text{bias} = \text{scores} \
\]
What Problems are Handled?

• Cannot share strength among **similar words**

 | she bought a **car** | she bought a **bicycle** |
 | she purchased a **car** | she purchased a **bicycle** |

→ solved, and similar contexts as well! 😊

• Cannot condition on context with **intervening words**

 Dr. Jane Smith **Dr. Gertrude Smith**

→ solved! 😊

• Cannot handle **long-distance dependencies**

 for **tennis** class he wanted to buy his own **racquet**
 for **programming** class he wanted to buy his own **computer**

→ not solved yet 😞
Let’s Try it Out!
(nn-lm.py)
We can share parameters between the input and output embeddings (Press et al. 2016, inter alia).

Want to try? Delete the input embeddings, and instead pick a row from the softmax matrix.
Training Tricks
Shuffling the Training Data

• Stochastic gradient methods update the parameters a little bit at a time

• What if we have the sentence “I love this sentence so much!” at the end of the training data 50 times?

• To train correctly, we should randomly shuffle the order at each time step
Other Optimization Options

- **SGD with Momentum**: Remember gradients from past time steps to prevent sudden changes

- **Adagrad**: Adapt the learning rate to reduce learning rate for frequently updated parameters (as measured by the variance of the gradient)

- **Adam**: Like Adagrad, but keeps a running average of momentum and gradient variance

- **Many others**: RMSProp, Adadelta, etc. (See Ruder 2016 reference for more details)
Early Stopping, Learning Rate Decay

• Neural nets have tons of parameters: we want to prevent them from over-fitting

• We can do this by monitoring our performance on held-out development data and stopping training when it starts to get worse

• It also sometimes helps to reduce the learning rate and continue training
Which One to Use?

• Adam is usually fast to converge and stable

• But simple SGD tends to do very well in terms of generalization

• You should use learning rate decay, (e.g. on Machine translation results by Denkowski & Neubig 2017)
Dropout

- Neural nets have lots of parameters, and are prone to overfitting

- Dropout: randomly zero-out nodes in the hidden layer with probability p at *training time only*

- Because the number of nodes at training/test is different, scaling is necessary:
 - Standard dropout: scale by p at test time
 - Inverted dropout: scale by $1/(1-p)$ at training time
Let’s Try it Out!
(nn-lm-optim.py)
Efficiency Tricks:
Operation Batching
Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10
- Minibatching combines together smaller operations into one big one
Minibatching

Operations w/o Minibatching

\[\tanh(Wx_1 + b) \quad \tanh(Wx_2 + b) \quad \tanh(Wx_3 + b) \]

Operations with Minibatching

\[x_1 \ x_2 \ x_3 \rightarrow \text{concat} \rightarrow \tanh(WX + b) \]

\[\text{broadcast} \rightarrow b \]
Manual Mini-batching

• Group together similar operations (e.g. loss calculations for a single word) and execute them all together
 • In the case of a feed-forward language model, each word prediction in a sentence can be batched
 • For recurrent neural nets, etc., more complicated
• DyNet has special minibatch operations for lookup and loss functions, everything else automatic
Mini-batched Code Example

```python
# in_words is a tuple (word_1, word_2)
# out_label is an output label
word_1 = E[in_words[0]]
word_2 = E[in_words[1]]
scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)
```

(a) Non-minibatched classification.

```python
# in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
# out_labels is a list of output labels [label_{1}, label_{2}, ...]
word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])
word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])
scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b
loss_sym = dy.sum_batches(dy.pickneglogsoftmax_batch(scores_sym, out_labels))
```

(b) Minibatched classification.
Let’s Try it Out!
(nn-lm-batch.py)
Automatic Mini-batching!

(see Neubig et al. 2017)

Try it with the \texttt{--dynet-autobatch} command line option
Autobatching Usage

• for each minibatch:
 • for each data point in mini-batch:
 • define/add data
 • sum losses
 • forward (autobatch engine does magic!)
 • backward
 • update
Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.
Questions?