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Language is Hard!



Are These Sentences OK?
• Jane went to the store. 

• store to Jane went the. 

• Jane went store. 

• Jane goed to the store. 

• The store went to Jane. 

• The food truck went to Jane.



Engineering Solutions
• Jane went to the store. 

• store to Jane went the. 

• Jane went store. 

• Jane goed to the store. 

• The store went to Jane. 

• The food truck went to Jane.

} Create a grammar of 
the language

} Consider 
morphology and exceptions

} Semantic categories, 
preferences

} And their exceptions



Are These Sentences OK?
• ジェインは店へ行った。 

• は店行ったジェインは。 

• ジェインは店へ行た。 

• 店はジェインへ行った。 

• 屋台はジェインのところへ行った。



Phenomena to Handle
• Morphology 

• Syntax 

• Semantics/World Knowledge 

• Discourse 

• Pragmatics 

• Multilinguality



Neural Networks: 
A Tool for Doing Hard Things



An Example Prediction Problem: 
Sentence Classification

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



A First Try: 
Bag of Words (BOW)

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs



Build It, Break It

There’s nothing I don’t 
love about this movie

very good 
good 

neutral 
bad 

very bad

I don’t love this movie

very good 
good 

neutral 
bad 

very bad

https://bibinlp.umiacs.umd.edu



Combination Features

• Does it contain “don’t” and “love”? 

• Does it contain “don’t”, “i”, “love”, and “nothing”? 



Basic Idea of Neural Networks 
(for NLP Prediction Tasks)

I hate this movie

lookup lookup lookup lookup

softmax

probs

some complicated 
function to extract 

combination features 
(neural net)

scores



Computation Graphs 
The Lingua Franca of Neural Nets



y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:



y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also an data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of 
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the 
value of its derivative w.r.t each argument (edge) 
times a derivative of an arbitrary input       .@F

@f(u)

@f(u)

@u

@F
@f(u)

=
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@F

@f(u)

◆>



y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.



y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (in DyNet)



y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x

>
Ax

@f(x,A)

@A
= xx

>

@f(x,A)

@x
= (A> +A)x

expression:

graph:



y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:



y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.



Algorithms (1)

• Graph construction

• Forward propagation

• In topological order, compute the value of the 
node given its inputs



x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation
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Forward Propagation
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Algorithms (2)
• Back-propagation:

• Process examples in reverse topological order 

• Calculate the derivatives of the parameters with respect to 
the final value 
(This is usually a “loss function”, a value we want to minimize) 

• Parameter update:

• Move the parameters in the direction of this derivative  
 
W -= α * dl/dW



A Concrete Example



Neural Network Frameworks
Static Frameworks

Dynamic Frameworks 
(Recommended!)

+Gluon

+Fold



Basic Process in Dynamic 
Neural Network Frameworks

• Create a model 

• For each example 

• create a graph that represents the computation 
you want 

• calculate the result of that computation 

• if training, perform back propagation and 
update



DyNet
• Examples in this class will be in DyNet: 

• intuitive, program like you think (c.f. TensorFlow, 
Theano) 

• fast for complicated networks on CPU (c.f. 
autodiff libraries, Chainer, PyTorch) 

• has nice features to make efficient 
implementation easier (automatic batching)



Computation Graph 
and Expressions

import dynet as dy 

dy.renew_cg() # create a new computation graph 

v1 = dy.inputVector([1,2,3,4]) 
v2 = dy.inputVector([5,6,7,8]) 
# v1 and v2 are expressions 

v3 = v1 + v2 
v4 = v3 * 2 
v5 = v1 + 1 

v6 = dy.concatenate([v1,v2,v3,v5]) 

print v6            
print v6.npvalue() 



Computation Graph 
and Expressions

import dynet as dy 

dy.renew_cg() # create a new computation graph 

v1 = dy.inputVector([1,2,3,4]) 
v2 = dy.inputVector([5,6,7,8]) 
# v1 and v2 are expressions 

v3 = v1 + v2 
v4 = v3 * 2 
v5 = v1 + 1 

v6 = dy.concatenate([v1,v2,v3,v5]) 

print v6            
print v6.npvalue() 

expression 5/1



Computation Graph 
and Expressions

import dynet as dy 

dy.renew_cg() # create a new computation graph 

v1 = dy.inputVector([1,2,3,4]) 
v2 = dy.inputVector([5,6,7,8]) 
# v1 and v2 are expressions 

v3 = v1 + v2 
v4 = v3 * 2 
v5 = v1 + 1 

v6 = dy.concatenate([v1,v2,v3,v5]) 

print v6            
print v6.npvalue() 

array([  1.,   2.,   3.,   4.,   2.,   4.,   6.,   8.,   4.,   8.,  12.,  16.])



• Create basic expressions. 

• Combine them using operations. 

• Expressions represent symbolic computations. 

• Use: 
.value()  
.npvalue()  
.scalar_value()  
.vec_value()  
.forward()  
           to perform actual computation.

Computation Graph 
and Expressions



Model and Parameters

• Parameters are the things that we optimize over 
(vectors, matrices). 

• Model is a collection of parameters. 

• Parameters out-live the computation graph.



Model and Parameters
model = dy.Model() 

pW = model.add_parameters((20,4)) 
pb = model.add_parameters(20) 

dy.renew_cg() 
x = dy.inputVector([1,2,3,4]) 
W = dy.parameter(pW) # convert params to expression 
b = dy.parameter(pb) # and add to the graph 

y = W * x + b 



Parameter Initialization
model = dy.Model() 

pW = model.add_parameters((4,4)) 

pW2 = model.add_parameters((4,4), init=dy.GlorotInitializer()) 

pW3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1)) 

pW4 = model.parameters_from_numpu(np.eye(4)) 



Trainers and Backdrop

• Initialize a Trainer with a given model. 

• Compute gradients by calling expr.backward() 
from a scalar node. 

• Call trainer.update() to update the model 
parameters using the gradients.



Trainers and Backdrop
model = dy.Model() 

trainer = dy.SimpleSGDTrainer(model) 

p_v = model.add_parameters(10) 

for i in xrange(10): 
    dy.renew_cg() 

    v = dy.parameter(p_v) 
    v2 = dy.dot_product(v,v) 
    v2.forward()  

    v2.backward()  # compute gradients 

    trainer.update()



Trainers and Backdrop
model = dy.Model() 

trainer = dy.SimpleSGDTrainer(model) 

p_v = model.add_parameters(10) 

for i in xrange(10): 
    dy.renew_cg() 

    v = dy.parameter(p_v) 
    v2 = dy.dot_product(v,v) 
    v2.forward()  

    v2.backward()  # compute gradients 

    trainer.update()

  dy.SimpleSGDTrainer(model,...) 

  dy.MomentumSGDTrainer(model,...) 

  dy.AdagradTrainer(model,...) 

  dy.AdadeltaTrainer(model,...) 

  dy.AdamTrainer(model,...) 



Training with DyNet
• Create model, add parameters, create trainer. 

• For each training example: 

• create computation graph for the loss 

• run forward (compute the loss) 

• run backward (compute the gradients) 

• update parameters



Example Implementation 
(in DyNet)



Bag of Words (BOW)
I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs



Continuous Bag of Words 
(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=



Deep CBOW
I hate this movie

+

bias

=

scores

W

+ + +
=

tanh( 
  W1*h + b1)

tanh( 
  W2*h + b2)



Class Format/Structure



Class Format
•  Reading: Before the class 

•  Quiz: Simple questions about the required reading 
(should be easy) 

•  Summary/Elaboration/Questions: Instructor or 
TAs will summarize the material, elaborate on 
details, and field questions 

•  Code Walk: The TAs (or instructor) will walk 
through some demonstration code



Assignments
• Course is group (2-3) assignment/project based 

• Assignment 1: Survey the field and implement a 
baseline model 

• Assignment 2: Re-implement and reproduce 
results from a state-of-the-art model 

• Project: Perform a unique research project that 
either (1) improves on state-of-the-art, or (2) 
applies neural net models to a unique task



Instructors/Office Hours
• Instructor: Graham Neubig  

                   (Mon., 4:00-5:00PM GHC5409) 

• TAs:

• Zhengzhong (Hector) Liu (Mon. 1:00-2:00PM, 
GHC5517) 

• Xuezhe (Max) Ma (Tue. 12:00-1:00PM, GHC5517) 

• Daniel Clothiaux (Fri. 9:00-10:00AM, GHC5505) 

• Piazza: http://piazza.com/cmu/fall2017/cs11747/home

http://piazza.com/cmu/fall2017/cs11747/home


Class Plan



Section 1: 
Models of Words

undeserved

NN

• Word representations using context 

• Word representations using word form 

• Speed tricks for neural networks



Section 2: 
Models of Sentences

undeserved

NN

• Bag of words, bag of n-grams, convolutional nets 

• Recurrent neural networks and variations 

• Applications of sentence modeling

this movie’s reputation is



Sec.3: Sequence-to-sequence Models
I hate this movie

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

この 映画 が 嫌い

argmax

この 映画
argmax

が
argmax

嫌い
argmax

</s>
argmax

• Encoder decoder models 

• Attentional models



Section 4: 
Structured Prediction Models

I hate this movie

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

PRP VB DT NN
• Structured perceptron, structured max margin 

• Conditional random fields



Section 5: 
Models of Tree Structure

• Shift reduce, minimum spanning tree parsing 

• Tree structured compositions 

• Models of graph structures

I hate this movie

RNN

RNN

RNN



Section 6: 
Advanced Learning Techniques

• Variational Auto-encoders 

• Adversarial Networks 

• Marginal Likelihood, Reinforcement Learning 

• Semi-supervised and Unsupervised Learning



Section 7: 
Neural Networks and Knowledge

• Learning from/for Relational Databases 

• Interfacing with Relational Databases 

• Machine Reading Models 

• Reasoning with Neural Nets

animal

dog cat

is-a is-a



Section 8: 
Multi-task and Multilingual Learning

• Multi-task Learning Models 

• Multilingual Learning of Representations 

• Universal Analysis Models

I  hate   this   movie
この 映画 が 嫌い

PRP  VB   DT   NN



Section 9:  
Advanced Search Techniques

• Beam search and its variants 

• A* search



Any Questions?


