
15 Other Sequence-to-sequence Applications

Up until now, we have largely used machine translation as an example of sequence-to-sequence
learning tasks. However, as mentioned at the beginning of the course, sequence-to-sequence
models are quite general, and can be used for a large number of tasks. This chapter provides
a brief survey of some other sequence-to-sequence tasks, and describes some of the unique
features that make these tasks di�cult or di↵erent from machine translation.

15.1 Dialog

Another interesting application area of sequence-to-sequence models is dialog systems. In
this case, the input to the system F is an utterance by a user, and the output E is a reply
generated by the system. Models for such reply generation have been created using both
phrase-based [47] and neural [55, 49] translation systems.

One interesting aspect of dialog that makes it far from a straightforward application of
sequence-to-sequence models is that we can expect a great diversity in the responses that we
will expect for a certain input utterance. For example, the input “what is your name?” would
only have one or a few correct translations in an MT setting, but it would have a myriad of
correct conversational responses in a dialog setting. There have been a few methods proposed
to resolve this problem, including the introduction of an alternative objective function for
decoding [35]:

Ê = argmax
E

logP (E | F )� � logP (E) (151)

The first term here is the standard one used in decoding for sequence-to-sequence models, while
the second term promotes diversity (to the extent suggested by parameter �) by penalizing
results that are likely regardless of the input (such as “i don’t know”). There are also a
number of di↵erent methods related to diversity, including returning responses that belong
to di↵erent clusters [28], or adding information about the speaker to ensure that a response
reflects the trait of that speaker [36].

This diversity also poses a problem for evaluation of such systems, and [39] show that
standard evaluation metrics such as BLEU are of little use in the context of dialog. There
are ways to ameliorate this problem, such as using a large number of references weighted
by human qualitative judgements [18]. However, this is limited to the cases where these
annotations are available, and the fundamental problem of automatic evaluation is far from
solved.

Another feature of dialog, is that it is heavily reliant on context, and access of external
knowledge that the dialog system may be expected to have. This is particularly true for dialogs
in which the user is expecting to perform a task such as making a restaurant reservation, called
task-based dialog. Within this context, it is common to have an underlying dialog manager
that handles this long-term context, then use a sequence-to-sequence model to perform only
the language generation step based on the context provided by this dialog manager [58].
However, there are also some models for end-to-end trainable task-based dialog systems that
also take into account context [60].
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15.2 Monolingual Translation Tasks

There are also a number of sequence-to-sequence transduction tasks that are performed within
a single language, translating, for example, English into English.

15.2.1 Summarization

One typical example of this is text summarization. In the summarization task, one is
required to take a larger body of text and convert it into a smaller amount of text containing
the same information for browsing purposes. This can be done at a number of levels:

Sentence Compression: The problem of compressing a single sentence into a shorter single
sentence [31].

Single-document Summarization: The problem of compressing a single document into a
shorter summary [10].

Multi-document Summarization: the problem of reducing the information in multiple
documents into a single summary [7].

There are also typically two types of summarization: extractive summarization and
abstractive summarization. In extractive summarization, we simply choose some content
(usually one sentence at a time), and add these to the summary. In contrast, in abstractive
summarization we actually generate a new summary, and systems using this approach have
been created using the sequence-to-sequence models introduced in this course.

One unique element of summarization is that it is largely concerned with removing irrel-
evant content. Thus, many attempts, both using symbolic systems and neural systems, focus
on simply deleting words [31, 16]. In particular, tree-based methods that explicitly use syntax
have found some favor, as this is a natural way to model that fact that we can “chop o↵”
irrelevant phrases without a major change in the main content [44]. It is common to frame
these problems as a constrained optimization problem, we want to delete words to achieve a
summary with a certain length while maximizing the amount of relevant content that remains
in the summary.

There have also been a number of methods that move beyond only deletion, and frame
the problem as a sequence-to-sequence transduction problem. Successful methods have used
tree substitution grammars [14], and attentional neural networks [48]. These models can be
equipped with special mechanisms to copy words [25], or control the length of the summary
[30].

Summarization systems are generally evaluated based on the amount of recall of important
information that can be achieved within the limited summary length. The standard measure
is ROUGE, which measures recall over n-grams [37], and it is also common to perform manual
human evaluation as well.

Interested readers can find a more complete survey in [19].

15.2.2 Paraphrase Generation

Another example of translation between two sentences in the same language is paraphrasing:
re-wording sentences into other sentences with the same content but di↵erent surface features.
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This technology has a number of applications including query expansion for information re-
trieval [51], improving robustness of machine translation to lexical variations [9], converting
the style or register of text [45, 62], or sentence simplification for reading assistance [66, ?].
These works take approaches that are based on phrase-based machine translation [9, 45] tree-
based machine translation [66], or neural methods [57].

ringo ha ureteita

the apple was too ripe

ureteita orenji wo tabeta

she ate an over-ripe orange

too ripe

over-ripe

Figure 53: An example of extracting monolingual paraphrases from bilingual phrases.

One interesting aspect of paraphrasing is that it is possible to create paraphrasing models
without explicitly aligned parallel data. [6] describe a simple method to extract phrasal
paraphrase candidates from bilingual machine translation training data using pivoting, as
shown in Figure 53. Basically, the idea is that we can calculate the probability of a paraphrase
between English phrases P (e
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This means that if we can extract a phrase table from a parallel text, as described in Section 13,
we can build a paraphrasing model with no annotated parallel text. This overall paradigm has
proven quite e↵ective, and is now the basis for the widely used paraphrase database PPDB
[20].46

One other di�cult aspect of paraphrase generation is how to evaluate the generated para-
phrases. We would like the paraphrase to be accurate and fluent, but we also need to ensure
that they need to be significantly di↵erent from the original text. One example of an evalua-
tion measure this is PINC [12], which is like BLEU but considers not only the BLEU score,
but also the dissimilarity from the original input.

Interested readers can find an extensive survey in [2] or on http://paraphrasing.org.

15.3 Recognition/Generation of Continuous Inputs

While most of the previous sections have covered applications that take sequences of discrete
inputs and generate sequences of discrete outputs, there are also a large number of works on
modeling continuous inputs or ouputs, such as speech or images.

15.3.1 Sequence Generation from Continuous Inputs

One classical task that is a sequence-to-sequence modeling problem where the input sequence
is continuous is speech recognition (often abbreviated ASR for “automatic speech recog-
nition”). Classical approaches to speech recognition take a form similar to the WFST-based

46

http://paraphrase.org/
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symbolic translation models in Section 12 [43]. The main di↵erence between recognition and
translation is that now instead of creating a translation model P (f | e) that gives us the
likelihood of a source word given the target word, we create an acoustic model P (x | y) that
gives the probability of acoustic features x given a phoneme y. It is also common to flip this
probabiltiy P (y | x) These phonemes are then combined into words which are scored by the
language model.

Acoustic models are now almost exclusively modeled using deep neural networks that
either take in the acoustic features for a single frame x and predict its phoneme label y
[42], or take in a whole sequence X, encode it with a recurrent network (such as bi-directional
LSTMs [23]), and predict the probabilities based on this whole sequence worth of information.
One interesting method that can be applied to these problems connectionist temporal
classification (CTC), which automatically induces an alignment between phonemes and
corresponding frames using dynamic programming, and uses the alignments to train the neural
network [22]. There have also been some promising preliminary results on end-to-end speech
recognition with neural networks [11], which take in a sequence of speech features, and directly
try to predict the output as characters or words.

Speech recognition is generally evaluated using word error rate, which directly measures
the number of insertions, deletions, or substitutions necessary to turn the output into the
reference text.

Another example of continuous inputs is images, and caption generation models have
been applied to transform images into captions [41]. One major di↵erence between images
and sequences is that images are consistent in two-dimensional space, and because of this,
most image captioning methods use two-dimensional convolutional neural networks [34] to
encode the input. Once the input is encoded, it is common to use attention-based models
similar to those described in Section 8, often with additional improvements [29, 56]. It is also
possible to extend these models to describing videos, which requires additional management
of information across multiple time-steps, which can be done by using a recurrent neural
network over these time steps [56]. Another hybrid task that considers both text and visual
input is visual question answering, in which the input is both an image (visual) and a
question (textual), and the model is required to output an answer [3].

15.3.2 Generating Continuous Outputs

All of the tasks above can also be reversed into a task that takes a discrete input sequence
and outputs a continuous output such as speech or images.

Text-to-speech conversion, or speech synthesis, is the generation of speech from text,
and models to do so generally stich together existing wave forms in a coherent way [26], or
generate speech using models such as hidden Markov models [65] and deep neural networks
[64]. One method that has recently proven e↵ective in the speech synthesis area uses dialated
convolutional neural networks, which use convolutions with gradually increasing spans in the
decoder portion of the network [53].47 There are also methods for voice conversion, which
map a sequence of speech frames to another sequence of speech frames in the voice of another
speaker [52].

Speech synthesis models are often evaluated using mel-frequency cepstral distortion
[32], which is a measure of di↵erence between reference speech and the generated speech. This

47These dialated convolutional networks have also proven useful in modeling text.[27]

119



is an incomplete measure, however, and manual listening tests are often employed as well.
Another example of generating continuous outputs is image generation from captions. This

can be done with both recurrent [24] neural networks, or deconvolutional networks [63],
which reverse the order of the convolution to generate from compressed representations to
individual image pixels. One method that has evolved from this image generation task to be
used in a number of other areas is generative adversarial networks (GANs) [21]. The idea
of GANs is that in addition to our generator neural network, we also have a discriminator
network that tries to distinguish between generated and proposed outputs. The training
objective of the generator is then modified to both assign high probability to true images, and
allow the generator to learn to generate images that “fool” the discriminator. This makes
images that are more natural, as any particularities of generated images that may be picked
up on by the discriminator will be explicitly penalized.

15.4 Models of Structured Data

Finally, there are sequence-to-sequence models that attempt to generate sequential data with
an explicit structure, such as tree structure or graph structure.

One widely researched example of this is syntactic parsing, which tries to find the syntactic
structure of sentences as shown in Section 14. In general, this syntactic structure is created
using specialized algorithms such as the CKY algorithm, with refinements in how we learn
the grammar, etc. [40]. [54] have also shown that generation of parse trees can be performed
using standard encoder-decoder models, by linearizing the parse tree into a bracketed sequence
representing the original tree structure. More sophisticated models combine structure with
neural networks, leveraging syntactic constraints to help the models learn more e↵ectively for
the task at hand [50, 15]. Syntactic parsing is generally evaluated based on the accuracy of
trees, specifically bracketing F -measure.

Another structured generation task is semantic parsing, which attempts to generate an
analysis of a natural language utterance in a form that is easy to use for downstream applica-
tions. These semantic representations can take various forms, with one recently popular form
being the abstract meaning representation (AMR) [5], a graph-based representation of
who does what to whom. It is also common to generate task-specific representations, the
most common of which being for performing question answering [61], giving commands [4], or
even generating general-purpose programs [38]. In addition to methods tailored specifically
to generating trees, there are also methods for performing semantic parsing using general-
purpose sequence-to-sequence models, both symbolic [1] and neural [33]. The accuracy of
semantic parses can be measured either using direct evaluation of the semantic structures
themselves [8], or through extrinsic evaluation on how well the representations such as how
well a question answerer can answer questions [13].

Natural language generation performs transformation in the opposite direction, gen-
erating natural language sentences from semantic representations. In many cases this can
be done with rule-based models [46]. However, there is also significant work in generation
using data-driven approaches such as tree-based symbolic models [17], or neural models [59].
Evaluation of generated language can be done by automatic metric such as BLEU, but it is
common to rely on manual e↵ort to provide a final evaluation.
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15.5 Exercise

A potential exercise for this section would be to find and download a data set for one of these
tasks, and run your sequence-to-sequence model on it and observe the results.
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