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A Typical Situation
• You’ve implemented an NLP system based on 

neural networks 

• You’ve looked at the code, and it looks OK 

• It has low accuracy, or makes incomprehensible 
errors 

• What do I do?



Three Model Understanding 
Dimensions

• Debugging: Identifying problems in your 
implementation (or assumptions) 

• Interpretable Evaluation: Identifying typical error 
cases of an implemented system 

• Interpreting Predictions: Examining individual 
predictions to dig deeper



Debugging



In Neural Net Models, 
Debugging is Paramount!

• Models are often complicated and opaque 

• Everything is a hyperparameter (network size, 
model variations, batch size/strategy, optimizer/
learning rate) 

• Non-convex, stochastic optimization has no 
guarantee of decreasing/converging loss



Possible Causes
• Training time problems

• Lack of model capacity 
• Poor training algorithm 
• Training time bug 

• Test time problems
• Disconnect between training and test 
• Failure of search algorithm 

• Overfitting
• Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.



Debugging at Training Time



Identifying Training Time 
Problems

• Look at the loss function calculated on the 
training set 

• Is the loss function going down? 

• Is it going down basically to zero if you run 
training long enough (e.g. 20-30 epochs)? 

• If not, does it go down to zero if you use very 
small datasets?



Is My Model Too Weak?
• Larger models tend to perform better, esp. when pre-trained 

(e.g. Raffel et al. 2020)

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)



Trouble w/ Optimization
• If increasing model size doesn’t help, you may have an optimization 

problem 

• Check your 

• optimizer (Adam? standard SGD?) 

• learning rate (is the rate you're using standard, are you using 
decay?) 

• initialization (uniform? Glorot?) 

• minibatching (are you using sufficiently large batches?) 

• Pay attention to these details when replicating previous work



Debugging at Test Time



Training/Test Disconnects
• Usually your loss calculation and prediction will be 

implemented in different functions 

• Especially true for structured prediction models 
(e.g. encoder-decoders) 

• Like all software engineering: duplicated code is a 
source of bugs! 

• Also, usually loss calculation is minibatched, 
generation not.



Debugging Minibatching
• Debugging mini-batched loss calculation 

• Calculate loss with large batch size (e.g. 32) 

• Calculate loss for each sentence individually 
and sum 

• The values should be the same (modulo 
numerical precision) 

• Create a unit test that tests this!



Debugging Structured 
Generation

• Your decoding code should get the same score as loss 
calculation 

• Test this: 

• Call decoding function, to generate an output, and 
keep track of its score 

• Call loss function on the generated output 

• The score of the two functions should be the same 

• Create a unit test doing this!



Beam Search
• Instead of picking one high-probability word, 

maintain several paths



Debugging Search

• As you make search better, the model score 
should get better (almost all the time) 

• Search w/ varying beam sizes and make sure you 
get a better overall model score with larger sizes 

• Create a unit test testing this!



Mismatch b/t Optimized 
Function and Evaluation Metric



Loss Function, 
Evaluation Metric

• It is very common to optimize for maximum 
likelihood for training 

• But even though likelihood is getting better, 
accuracy can get worse



Example w/ Classification
• Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.



Managing Loss Function/
Eval Metric Differences

• Most principled way: use structured prediction 
techniques to be discussed in future classes 

• Structured max-margin training 

• Minimum risk training 

• Reinforcement learning 

• Reward augmented maximum likelihood



A Simple Method: 
Early Stopping w/ Eval Metric

stop here

not here



Interpretable Evaluation



Look At Your Data!
• Both bugs and research directions can be found by 

looking at your model outputs  

• The first word of the sentence is dropped every 
generation 
> went to the store yesterday 
> bought a dog 
→ implementation error? 

• The model is consistently failing on named entities 
→ need a better model of named entities?



Systematic Qualitative Analysis of 
Model Errors

• Look at 100-200 errors
• Try to group them into a typology (pre-defined or on the fly) 
• Example: Vilar et al. (2006)



Quantitative Analysis
• Measure gains quantitatively. What is the phenomenon you 

chose to focus on? Is that phenomenon getting better? 

• You focused on low-frequency words: is accuracy on 
low frequency words increasing? 

• You focused on syntax: is syntax or word ordering 
getting better, are you doing better on long-distance 
dependencies? 

• You focused on search: how many search errors are 
being reduced?



Example: ExplainaBoard

http://explainaboard.inspiredco.ai/ 

http://explainaboard.inspiredco.ai/


Interpretation of Predictions 
and Model Internals



Why Interpret Model 
Predictions?

• e.g. You want to know 

• which words were used in making a decision to 
verify its accuracy. 

• whether your model has learned a difficult 
pattern, or is focused on spurious correlations. 

• understand what information a pre-trained 
model has captured internally.



LIME: Local Perturbations

Ribeiro et al, KDD 2016 https://christophm.github.io/interpretable-ml-book/lime.html



Explanation Technique: 
Gradient-based Scores

Figure from Ancona et al, ICLR 2018



Explanation Technique: 
Attention

Entailment

Rocktäschel et al, 2015

BERTViz

Vig et al, 2019

Document classification

Yang et al, 2016

Image captioning

Xu et al, 2015
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Edge Probing 
(Tenney et al. 2019)

• A general framework that allows for probing of 
many types of information



Issues with probing

Probing Classifiers: Promises, Shortcomings, and Alternatives 
by Yonatan Belinkov  

• Did I interpret the representation or my probing classifier 
learn the task itself (Hewitt et al. 2019)


• Solution - information theoretic probing that controls for 
classifier complexity (Voita et al. 2020)


• Can only probe for properties you have supervision for


• Correlation doesn't imply causation


• and more…

https://arxiv.org/pdf/2102.12452.pdf


Questions?


