
CS11-711 Advanced NLP

Debugging and
Understanding NLP Models

Graham Neubig

Site
https://phontron.com/class/anlp2022/

w/ Some Slides by Danish Pruthi

https://phontron.com/class/anlp2022/

A Typical Situation
• You’ve implemented an NLP system based on

neural networks

• You’ve looked at the code, and it looks OK

• It has low accuracy, or makes incomprehensible
errors

• What do I do?

Three Model Understanding
Dimensions

• Debugging: Identifying problems in your
implementation (or assumptions)

• Interpretable Evaluation: Identifying typical error
cases of an implemented system

• Interpreting Predictions: Examining individual
predictions to dig deeper

Debugging

In Neural Net Models,
Debugging is Paramount!

• Models are often complicated and opaque

• Everything is a hyperparameter (network size,
model variations, batch size/strategy, optimizer/
learning rate)

• Non-convex, stochastic optimization has no
guarantee of decreasing/converging loss

Possible Causes
• Training time problems

• Lack of model capacity
• Poor training algorithm
• Training time bug

• Test time problems
• Disconnect between training and test
• Failure of search algorithm

• Overfitting
• Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time
Problems

• Look at the loss function calculated on the
training set

• Is the loss function going down?

• Is it going down basically to zero if you run
training long enough (e.g. 20-30 epochs)?

• If not, does it go down to zero if you use very
small datasets?

Is My Model Too Weak?
• Larger models tend to perform better, esp. when pre-trained

(e.g. Raffel et al. 2020)

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Trouble w/ Optimization
• If increasing model size doesn’t help, you may have an optimization

problem

• Check your

• optimizer (Adam? standard SGD?)

• learning rate (is the rate you're using standard, are you using
decay?)

• initialization (uniform? Glorot?)

• minibatching (are you using sufficiently large batches?)

• Pay attention to these details when replicating previous work

Debugging at Test Time

Training/Test Disconnects
• Usually your loss calculation and prediction will be

implemented in different functions

• Especially true for structured prediction models
(e.g. encoder-decoders)

• Like all software engineering: duplicated code is a
source of bugs!

• Also, usually loss calculation is minibatched,
generation not.

Debugging Minibatching
• Debugging mini-batched loss calculation

• Calculate loss with large batch size (e.g. 32)

• Calculate loss for each sentence individually
and sum

• The values should be the same (modulo
numerical precision)

• Create a unit test that tests this!

Debugging Structured
Generation

• Your decoding code should get the same score as loss
calculation

• Test this:

• Call decoding function, to generate an output, and
keep track of its score

• Call loss function on the generated output

• The score of the two functions should be the same

• Create a unit test doing this!

Beam Search
• Instead of picking one high-probability word,

maintain several paths

Debugging Search

• As you make search better, the model score
should get better (almost all the time)

• Search w/ varying beam sizes and make sure you
get a better overall model score with larger sizes

• Create a unit test testing this!

Mismatch b/t Optimized
Function and Evaluation Metric

Loss Function,
Evaluation Metric

• It is very common to optimize for maximum
likelihood for training

• But even though likelihood is getting better,
accuracy can get worse

Example w/ Classification
• Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.

Managing Loss Function/
Eval Metric Differences

• Most principled way: use structured prediction
techniques to be discussed in future classes

• Structured max-margin training

• Minimum risk training

• Reinforcement learning

• Reward augmented maximum likelihood

A Simple Method:
Early Stopping w/ Eval Metric

stop here

not here

Interpretable Evaluation

Look At Your Data!
• Both bugs and research directions can be found by

looking at your model outputs

• The first word of the sentence is dropped every
generation
> went to the store yesterday
> bought a dog
→ implementation error?

• The model is consistently failing on named entities
→ need a better model of named entities?

Systematic Qualitative Analysis of
Model Errors

• Look at 100-200 errors
• Try to group them into a typology (pre-defined or on the fly)
• Example: Vilar et al. (2006)

Quantitative Analysis
• Measure gains quantitatively. What is the phenomenon you

chose to focus on? Is that phenomenon getting better?

• You focused on low-frequency words: is accuracy on
low frequency words increasing?

• You focused on syntax: is syntax or word ordering
getting better, are you doing better on long-distance
dependencies?

• You focused on search: how many search errors are
being reduced?

Example: ExplainaBoard

http://explainaboard.inspiredco.ai/

http://explainaboard.inspiredco.ai/

Interpretation of Predictions
and Model Internals

Why Interpret Model
Predictions?

• e.g. You want to know

• which words were used in making a decision to
verify its accuracy.

• whether your model has learned a difficult
pattern, or is focused on spurious correlations.

• understand what information a pre-trained
model has captured internally.

LIME: Local Perturbations

Ribeiro et al, KDD 2016 https://christophm.github.io/interpretable-ml-book/lime.html

Explanation Technique:
Gradient-based Scores

Figure from Ancona et al, ICLR 2018

Explanation Technique:
Attention

Entailment

Rocktäschel et al, 2015

BERTViz

Vig et al, 2019

Document classification

Yang et al, 2016

Image captioning

Xu et al, 2015

Probing

weighted sum

α1 α2

q

Semb

x1

BiLSTM BiLSTM BiLSTM

x2

BiLSTM

xnx3

hnh3h2h1

…

α3 α4

classifier
(tense)

y

Probe

Edge Probing
(Tenney et al. 2019)

• A general framework that allows for probing of
many types of information

Issues with probing

Probing Classifiers: Promises, Shortcomings, and Alternatives
by Yonatan Belinkov

• Did I interpret the representation or my probing classifier
learn the task itself (Hewitt et al. 2019)

• Solution - information theoretic probing that controls for
classifier complexity (Voita et al. 2020)

• Can only probe for properties you have supervision for

• Correlation doesn't imply causation

• and more…

https://arxiv.org/pdf/2102.12452.pdf

Questions?

