CS11-711 Advanced NLP Debugging and Understanding NLP Models

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/anlp2022/</u>

w/ Some Slides by Danish Pruthi

A Typical Situation

- You've implemented an NLP system based on neural networks
- You've looked at the code, and it looks OK
- It has low accuracy, or makes incomprehensible errors
- What do I do?

Three Model Understanding Dimensions

- **Debugging:** Identifying problems in your implementation (or assumptions)
- Interpretable Evaluation: Identifying typical error cases of an implemented system
- Interpreting Predictions: Examining individual predictions to dig deeper

Debugging

In Neural Net Models, Debugging is Paramount!

- Models are often complicated and opaque
- Everything is a hyperparameter (network size, model variations, batch size/strategy, optimizer/ learning rate)
- Non-convex, stochastic optimization has no guarantee of decreasing/converging loss

Possible Causes

Training time problems

- Lack of model capacity
- Poor training algorithm
- Training time bug
- Test time problems
 - Disconnect between training and test
 - Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Don't debug all at once! Start top and work down.

Debugging at Training Time

Identifying Training Time Problems

- Look at the loss function calculated on the training set
 - Is the loss function going down?
 - Is it going down basically to zero if you run training long enough (e.g. 20-30 epochs)?
 - If not, does it go down to zero if you use very small datasets?

Is My Model Too Weak?

 Larger models tend to perform better, esp. when pre-trained (e.g. Raffel et al. 2020)

Model	GLUE Average	CoLA Matthew's	SST-2 Accuracy	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{F1} \end{array}$	MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4^{a}	69.2^{b}	97.1^{a}	93.6^{b}	91.5^{b}	92.7^{b}	92.3^b
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92 .8

• Larger models can learn with fewer steps (Kaplan et al. 2020, Li et al. 2020)

Trouble w/ Optimization

- If increasing model size doesn't help, you may have an optimization problem
- Check your
 - **optimizer** (Adam? standard SGD?)
 - learning rate (is the rate you're using standard, are you using decay?)
 - **initialization** (uniform? Glorot?)
 - **minibatching** (are you using sufficiently large batches?)
- Pay attention to these details when replicating previous work

Debugging at Test Time

Training/Test Disconnects

- Usually your loss calculation and prediction will be implemented in different functions
- Especially true for structured prediction models (e.g. encoder-decoders)
- Like all software engineering: duplicated code is a source of bugs!
- Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching

- Debugging mini-batched loss calculation
 - Calculate loss with large batch size (e.g. 32)
 - Calculate loss for each sentence individually and sum
 - The values should be the same (modulo numerical precision)
- Create a unit test that tests this!

Debugging Structured Generation

- Your decoding code should get the same score as loss calculation
- Test this:
 - Call **decoding function**, to generate an output, and keep track of its score
 - Call loss function on the generated output
 - The score of the two functions should be the same
- Create a unit test doing this!

Beam Search

 Instead of picking one high-probability word, maintain several paths

Debugging Search

- As you make search better, the **model score** should get better (almost all the time)
- Search w/ varying beam sizes and make sure you get a better overall model score with larger sizes
- Create a unit test testing this!

Mismatch b/t Optimized Function and Evaluation Metric

Loss Function, Evaluation Metric

- It is very common to optimize for maximum likelihood for training
- But even though likelihood is getting better, accuracy can get worse

Example w/ Classification

Loss and accuracy are de-correlated (see dev)

• Why? Model gets more confident about its mistakes.

Managing Loss Function/ Eval Metric Differences

- Most principled way: use structured prediction techniques to be discussed in future classes
 - Structured max-margin training
 - Minimum risk training
 - Reinforcement learning
 - Reward augmented maximum likelihood

A Simple Method: Early Stopping w/ Eval Metric

Interpretable Evaluation

Look At Your Data!

- Both bugs and research directions can be found by looking at your model outputs
- The first word of the sentence is dropped every generation
 - > went to the store yesterday
 - > bought a dog
 - → implementation error?
- The model is consistently failing on named entities
 → need a better model of named entities?

Systematic Qualitative Analysis of Model Errors

- Look at 100-200 errors
- Try to group them into a typology (pre-defined or on the fly)
- Example: Vilar et al. (2006)

Quantitative Analysis

- Measure gains quantitatively. What is the phenomenon you chose to focus on? Is that phenomenon getting better?
 - You focused on low-frequency words: is accuracy on low frequency words increasing?
 - You focused on syntax: is syntax or word ordering getting better, are you doing better on long-distance dependencies?
 - You focused on search: how many search errors are being reduced?

Example: ExplainaBoard

🗋 Terms

Fine-grained Performance

Click a bar to see detailed cases of the system output at the bottom of the page.

Error cases from bars #1 in Accuracy by text length in tokens

	st_chin gneubig_te	est	
ID	True Label	Predicted Label	Text
5 🗍	positive	negative	but he somehow pulls it off .
15 🗍	positive	positive	a thoughtful , provocative , insistently humanizing film .
133 🗍	positive	negative	must be seen to be believed .

http://explainaboard.inspiredco.ai/

Interpretation of Predictions and Model Internals

Why Interpret Model Predictions?

- e.g. You want to know
 - which words were used in making a decision to verify its accuracy.
 - whether your model has learned a difficult pattern, or is focused on **spurious correlations**.
 - understand what information a pre-trained model has captured internally.

LIME: Local Perturbations

For	Christmas	Song	visit	my	channel!	;)	prob	weight
1	0	1	1	0	0	1	0.17	0.57
0	1	1	1	1	0	1	0.17	0.71
1	0	0	1	1	1	1	0.99	0.71
1	0	1	1	1	1	1	0.99	0.86
0	1	1	1	0	0	1	0.17	0.57

label_prob	feature	feature_weight
0.9939024	channel!	6.180747
0.9939024	For	0.000000
0.9939024	;)	0.000000

Ribeiro et al, KDD 2016 https://christophm.github.io/interpretable-ml-book/lime.html

Explanation Technique: Gradient-based Scores

Method	Attribution $R_i^c(x)$	Example of attributions on MNIS ReLU Tanh Sigmoid Softplu				
Gradient * Input	$x_i \cdot rac{\partial S_c(x)}{\partial x_i}$	\bigcirc		Ø	\bigcirc	
Integrated Gradient	$\left (x_i - \bar{x_i}) \cdot \int_{\alpha=0}^1 \frac{\partial S_c(\tilde{x})}{\partial(\tilde{x_i})} \right _{\tilde{x}=\bar{x}+\alpha(x-\bar{x})} d\alpha$	\bigcirc			0	
<u> </u>	$x_i \cdot \frac{\partial^g S_c(x)}{\partial x_i}, g = \frac{f(z)}{z}$	\bigcirc		\bigcirc		
DeepLIFT	$\left(x_i - \bar{x_i}\right) \cdot \frac{\partial^g S_c(x)}{\partial x_i}, g = \frac{f(z) - f(\bar{z})}{z - \bar{z}}\right)$	\bigcirc			Ó	

Figure from Ancona et al, ICLR 2018

Explanation Technique: Attention

Entailment Rocktäschel et al, 2015

whydoeszebrashavestripes?whatisthepurposeorthosestripes?whodotheyservethezebrasinthewildlife?yetasyetasthisprovidescamouflage-predatorvisionissuchthatitisusuallydifficultforthemtoseecomplexpatterns

Document classification Yang et al, 2016

A <u>stop</u> sign is on a road with a mountain in the background.

BERTViz Vig et al, 2019

Edge Probing (Tenney et al. 2019)

• A general framework that allows for probing of many types of information

Issues with probing

- Did I interpret the representation or my probing classifier learn the task itself (Hewitt et al. 2019)
 - Solution information theoretic probing that controls for classifier complexity (Voita et al. 2020)
- Can only probe for properties you have supervision for
- Correlation doesn't imply causation
- and more...

Probing Classifiers: Promises, Shortcomings, and Alternatives by Yonatan Belinkov Questions?