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A new era in ML

Step one: 
pretraining

Diverse (typically 
unlabeled) data

Step two: 
adaptation

Specialize to narrow 
distribution

Pre-trained 
model

Bommasani et al. 2021



A new era in ML

• Spearheaded in NLP (with the widespread success of BERT)

• Now finding it’s way into other applications as well 

• Heard of these?
• CLIP [Radford et al. 2021] 



Why pre-training?

Convenience of few-shot learning: Do not need to collect lot of training 
data for each new task

Improved downstream performance: Effectively incorporate useful 
information from a lot of data

Especially true for robustness when test distribution is different 
from training distribution you collected labeled data from

One of the most reliable methods to improve robustness across several natural shifts



Why pre-training?
Consider satellite remote sensing task

We have training data from North America, but very limited data from Africa

“In-distribution” 
training data
North America

Standard supervised learning

Performs poorly on OOD test data from Africa



Why pre-training?
Consider satellite remote sensing task

We have training data from North America, but very limited data from Africa

“In-distribution” 
training data
North America

Transfer learning setting

Pre-trained 
model

Performs better on OOD test data from Africa



How to use pre-trained models?



Talk outline: part one



Talk outline: part two



How to fine-tune pretrained models?



How to use pre-trained models?

How to leverage the diverse information contained in 
pre-trained models?

Method one: Fine-tuning

“In-distribution” 
training data



How to use pre-trained models?

How to leverage the diverse information contained in 
pre-trained models?

Method two: Linear probing

“In-distribution” 
training data



Understanding transfer learning

Several moving pieces

Pre-training distribution

Pre-training procedure Adaptation distribution

Model architecture

Adaptation procedure
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Linear probing vs fine-tuning

Pop quiz!

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Dataset: BREEDS Living-17

Task: classify into animal categories

Train distribution: one subset of ImageNet hierarchy tree 
with animal category as root

Test distribution: other subset of ImageNet hierarchy tree 
with animal category as root

Pretrained model: MoCo-V2, which has seen unlabeled 
ImageNet images (including various types of animals)

Train

Test

Santurkar et al. 2020

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear probing 96.5% ?

Fine-tuning 97.1%

Does linear probing do better 
than scratch OOD?

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear probing 96.5% 82.2%

Fine-tuning 97.1%

Does linear probing do better 
than scratch OOD? Yes!

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear probing 96.5% 82.2%

Fine-tuning 97.1% ?

Does fine-tuning do better 
than linear probing OOD?

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: living-17

Living-17 ID OOD

Scratch 92.4% 58.2%

Linear probing 96.5% 82.2%

Fine-tuning 97.1% 77.7%

Does linear probing do better 
than fine-tuning OOD? No!

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Dataset: CIFAR 10.1

Task: classify into CIFAR-10 categories

Train distribution: original CIFAR-10 dataset

Test distribution: recent near-replication of the pipeline

Pretrained model: MoCo-V2, which has seen unlabeled ImageNet 

images

Recht et al. 2019

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: CIFAR10.1

Living-17 ID OOD

Linear probing 91.8% 82.7

Fine-tuning 97.3% ?

Does linear probing do better 
than fine-tuning OOD?

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pop quiz: CIFAR10.1

Does linear probing do better 
than fine-tuning OOD? No!

Living-17 ID OOD

Linear probing 91.8% 82.7

Fine-tuning 97.3% 92.3%

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Linear probing vs fine-tuning summary

Which method does better?

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Linear probing vs fine-tuning summary

Common wisdom is fine-tuning works better than linear probing

Averaged over 10 datasets

ID OOD

Linear probing 82.9%

Fine-tuning 85.1%

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Linear probing vs fine-tuning summary

Averaged over 10 datasets

ID OOD

Linear probing 82.9% 66.2%

Fine-tuning 85.1% 59.3%

LP performs better than FT OOD on 8 out of 10 datasets

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Linear probing vs fine-tuning summary

• Common wisdom is fine-tuning works better than linear probing

• Linear probing can often perform better out-of-distribution
• Especially with high quality pre-trained features and large distribution shifts

There is probably a lot we can do to improve downstream methods… 

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Theoretical analyses
• Prior transfer learning theory mostly looks at only linear probing 

which is convex (Wu et al. 2020, Tripuraneni et al. 2020, Du et al. 
2020, Xie et al. 2020)

• We want to analyze the non-convex objective of fine-tuning 

• Same objective as training from scratch but different training 
dynamics stemming from pre-trained initialization

• Cannot assume random initialization and associated simplifications 

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Intuition for theoretical result

Initial head

ID

OOD

Pretrained 
Features

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Initial head

ID

OOD

Pretrained 
Features Fine-tuning: features for ID examples change in 

sync with the linear head

Features for OOD examples 
change less

Intuition for theoretical result
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Fine-tuning: features for ID examples change in 
sync with the linear head

Pretrained 
Features

ID

OOD

Features for OOD examples 
change less

Intuition for theoretical result
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pretrained 
Features

ID

OOD

Fine-tuning: features for ID examples change in 
sync with the linear head

Features for OOD examples 
change less

Intuition for theoretical result
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pretrained 
Features

ID

OOD

Fine-tuning: features for ID examples change in 
sync with the linear head

Features for OOD examples 
change less

Intuition for theoretical result
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Pretrained 
Features

Head performs 
poorly on OOD 
examples

Intuition for theoretical result
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Linear probing: freezes 
pretrained features

Fine-tuning: features for ID 
examples change in sync 
with the linear head

Head is decent on 
OOD examples



Fine-tuning can lead to feature distortion
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.

Theorem (informal)

as pretrained features→ optimal∀𝒕,
𝐿!!" (𝜃#$ 𝑡 )
𝐿!!" 𝜃%& 𝑡

'
0,

Under simplifying assumptions (two-layer linear networks, squared error, 
OOD data in orthogonal subspace to ID training data), 
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Best of both worlds

Training data may not be linearly separable in the space of pre-trained 
features i.e. imperfect pre-trained features

Why does FT do better ID? 

Why does FT do worse OOD? 

Features can change a lot to accommodate a randomly initialized head

Can we refine features without distorting them too much?

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe Step 2: Fine-tune

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe Step 2: Fine-tune

Can prove that LP-FT dominates both LP and FT under 
the simple setting of perfect features

LP-FT method

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Improving fine-tuning

+10% over 
fine-tuning!

ID OOD

Linear probing 82.9% 66.2%

Fine-tuning 85.1% 59.3%

LP-FT 85.7% 68.9%

LP-FT obtains better than the best of both worlds

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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In-Distribution Accuracies
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.
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Out-of-Distribution Accuracies
Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Experimental investigation

• ID features change much more than OOD features (𝑙( distance) 
when doing vanilla fine-tuning

• ID features change an order of magnitude less when doing LP-
FT rather than vanilla fine-tuning (same training loss)

Kumar, Raghunathan, Jones, Ma, and Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. ICLR 2022.



Discussion

• Pretrained models give large improvements in accuracy, but 
how we fine-tune them is key

• LP-FT is just a starting point and one example

• More broadly, light-weight fine-tuning (in NLP) improves 
robustness
• Adapter modules [Houlsby et al. 2019], prefix tuning [Li and Liang, 2021]
• See similar tradeoffs i.e. drop in in-distribution performance



Can we skip fine-tuning entirely?
(in-context learning)



Large language models (LMs)

• Large LMs are trained to predict the next token given previous 
tokens on internet-scale text datasets

Albert Einstein was a German theoretical physicist
predict

If we can predict next token 
well, can we solve all tasks?



The need for “learning”
A physicist

predict
Albert Einstein was 

predict
German

predict
A genius

Need to specify the task in the prompt

“Prompt engineering” Can we use data to so the same?



“In-context” learning
• Just present the training data directly in the prompt 
• No parameters are optimized 

Marie Curie was Polish \n Mahatma Gandhi was Indian \n Albert Einstein was German

Concatenate independent examples

Gets SOTA on LAMBADA (completion), TriviaQA (question answering), etc.
[Brown et al. 2020]



Why is this possible?

Mismatch with pretraining
• LM is not explicitly trained to do learning
• Prompts not formatted like natural language (e.g., concatenate 

independent examples). 

Albert Einstein was a German theoretical 
physicist, widely acknowledged to be one 
of the greatest physicists of all time. 
Einstein is best known for developing the 
theory of relativity, but he also ….

Pretraining documents In-context learning prompt

Albert Einstein was German 
\n Mahatma Gandhi was 

Indian \n Marie Curie was
Mismatch



How does in-context learning work?

Hard to answer because
• Real pretraining data is messy and huge
• The models are huge (170B params)

Our goals
1. First step for understanding in-context learning with simple framework
2. Provide small-scale dataset as a testbed for in-context learning
3. Use insights to figure out how to better design prompts?



Mental model of pretraining distribution
• There is a latent concept 𝜃
• Conditioned on 𝜃, data is generated via a Hidden Markov Model
• Documents are generated as follows:

• Sample 𝜃
• Sample text from HMM(𝜃)

Albert Einstein was a German theoretical physicist, widely 
acknowledged to be one of the greatest physicists of all time. 
Einstein is best known for developing the theory of relativity, but 
he also ….

Concept 𝜃
(e.g., wiki bio) HMM(𝜽)



Importance of latent concept

• All sentences in a document share a concept (long-term coherence)
• To predict coherent next words, LM must infer shared concept

Albert Einstein was a German theoretical physicist, widely 
acknowledged to be one of the greatest physicists of all time. 
Einstein is best known for developing the theory of relativity, but 
he also ….

made important 
contributions to 

the development 
of quantum 
mechanics.

LM

𝜃? HMM(𝜽)



From pretraining to in-context learning
• If the LM also infers the prompt concept from examples (despite 

distributional mismatch) -> in-context learning emerges
• If the pretraining data is diverse, the LM can infer many different concepts

Albert Einstein was German \n 
Mahatma Gandhi was Indian \n 

Marie Curie was

LM

𝜃⋆? HMM(𝜽⋆) Polish



Prompt distribution
• Prompt distribution 𝒑𝐩𝐫𝐨𝐦𝐩𝐭 with prompt concept 𝜃⋆

• Generate independent examples from HMM(𝜃⋆) and concatenate with 
delimiters
• 𝒑𝐩𝐫𝐨𝐦𝐩𝐭 can influence distribution of 𝑥 (e.g., full names)

• Allows 𝒑𝐩𝐫𝐨𝐦𝐩𝐭 to define the task

Gandhi was

\n

\n

?

Indian

Einstein was German

Curie was

Output (𝒚)Input (𝒙)

Albert

Mahatma

Marie

Delimiter

Concept 𝜃⋆
(e.g., wiki bio)

Albert Einstein was German \n 
Mahatma Gandhi was Indian \n 

Marie Curie was

Concatenate 



In-context learning as implicit Bayesian 
inference
• Assume pretrained LM fits pretraining distribution perfectly
• Reduces problem to comparing pretrain vs prompt distributions

• Given prompt ∼ 𝑝'123'4 (not pretraining distribution 𝑝) 
• Posterior predictive distribution:

𝑝 𝑦 prompt = )
,
𝑝 𝑦 prompt, 𝜃 𝑝 𝜃 ∣ prompt 𝑑𝜃

• Ideal: 𝑝 𝜃 ∣ prompt concentrates on prompt concept 𝜃⋆ with 
more examples

Weight on each concept



Empirical evidence from NLP benchmarks
• Experiment (Min et al. 2022): randomize the labels in in-context 

training examples
• Traditional supervised learning would fail to generalize
• Via in-context learning, the model can still infer 𝜃⋆ as most 

likely

Figs from Min et al. 2022



Empirical evidence from NLP benchmarks

• Surprisingly, in-context accuracy doesn’t drop much with random 
labels across 26 datasets

Figs from Min et al. 2022



Lessons for prompt design
Delimiters between examples should aid in inferring 𝜃⋆

- Such delimiters can be neutral (equally likely for all concepts)
- Or more likely to be generated by HMM(𝜃⋆) vs HMM( .𝜃)

• Neutral delimiter: newlines, slashes 
• Bad delimiter: Confuse the model towards another concept / task. Insert 

“Birthdate of” before each example
• Good delimiter: Insert “Nationality of” before each example



GINC: generative in-context dataset
• We create GINC: a small-scale dataset for studying in-context learning
• Pretrain: 1000 documents, each doc is one long sequence from one HMM, 

given some 𝜃
• Prompt: 2500 prompts per setting, concatenate independent examples



In-context learning in GINC
• In-context learning emerges for both Transformers and LSTM
• Main effect comes from the pretraining distribution

Transformer LSTM



Sensitivity to example ordering

• Zhao et al. 2021: GPT-3 accuracy varies from 50% to 90% 
depending on example order in prompt
• We mirror this in GINC
• More careful theoretical analysis could capture effect of order  



Extrapolation to unseen tasks
GPT-3 seems to work on weird / unseen tasks (Rong et al 2021)

Training examples (truncated) Test input and predictions



Extrapolation to unseen tasks
• Our theory is limited to concepts seen during pretraining
• In GINC, random unseen concepts can’t be learned by in-

context learning
• However, still possible for Bayesian inference to extrapolate: 

e.g., separate latent variables for semantics and syntax -> 
generalize to new combinations



Effect of model scaling
• In GINC: in-context accuracy improves with model size (as is common)
• Interestingly, improves even if pretraining loss is the same
• Inductive bias for in-context learning improves with model size?

Transformer # 
layers

GINC Vocab 
size

Pretrain Val 
loss

In-context 
Acc

12 layer 50 1.33 81.2

16 layer 50 1.33 84.7



Zero-shot is sometimes better than 1-shot
• Zero-shot in GPT-3 is better than 1-shot for some datasets (e.g., 

LAMBADA, HellaSwag, PhysicalQA, RACE-m)
• We also find instances in GINC where adding 1 training example (1 low-

prob transition) hurts performance



Small-scale test bed

• Can quickly try out different prompting strategies

• Can test out different pretraining methods as well



Summary

• Pre-trained models need to be adapted in some way
• Naïve adaptation can lead to larger change than necessary which can 

lead to “overfitting”
• Simple changes can fix these problems (like LP-FT)

• Can the model automatically discover how to adapt?
• “In-context learning” gets at that and is a surprising capability
• We do not have a good understanding of where this ability comes 

from, how to best harness it, and how to pre-train to induce in-context 
learning



Percy LiangTengyu MaRobbie JonesAnanya Kumar

Open 
Philanthropy

Sang Michael Xie

Thanks!



About me
• I am new to CMU and happy to chat with you

• I work in machine learning, particularly interested in 
• Making ML models work when test distribution differs from train distribution
• Uncovering and understanding surprising or unintended trends in models

• raditi@cmu.edu; GHC 7005



Appendix



Internals of GINC

• GINC outputs tokens from a memory matrix
• Rows are “entities” 
• Columns are “properties” (e.g., name, nationality)



Internals of GINC
• GINC defines a mixture of HMMs
• 2 independent hidden state chains (properties and entities)
• Output by indexing into a memory matrix M

Properties

Entities



Internals of GINC
• Concept 𝜃 is the property transition matrix
• Pattern of properties defines the “task” (name->nationality)

• Entity transition matrix is fixed and entities evolve slowly

Properties

Entities



Extrapolation to unseen concepts

• Is extrapolation possible?
• Possible extension: pretraining distribution samples both entity and property 

transition matrices from a prior distribution
• Extrapolate to new entity-property pairs

• Simple illustration
• 2 latents 𝑎, 𝑏
• Observed variable 𝑥
• Perhaps not all pairs of 𝑎, 𝑏 are present 

in training data, but extrapolation to new pairs 
may still be possible

• In general, possibly learn a family of “operations” on existing concepts

𝑎 𝑏

𝑥



GPT-3 experiment on LAMBADA
• Does example length matter in GPT3?
• Define short examples (200-300 characters) and long examples (500-

600 chars) in LAMBADA completion task
• Test on short examples only: long examples improve performance 

without adding explicit task-related information or examples

Duplicating short 
examples to have 
same total prompt 
length doesn’t help


