CS11-711 Advanced NLP Language Model Pre-training

Graham Neubig and Lucio Dery

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/anlp2022/</u>

(w/ slides by Antonis Anastasopoulos)

Multi-task Learning Overview

Terminology

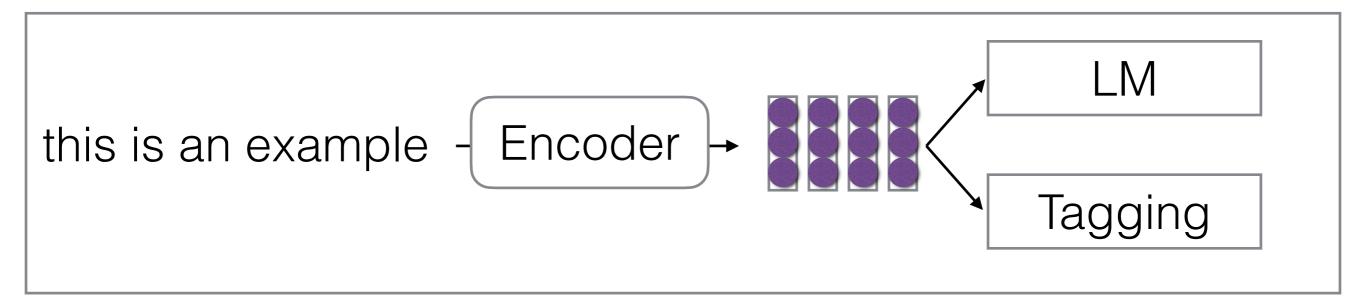
- Multi-task learning is a general term for training on multiple tasks
- **Transfer learning** is a type of multi-task learning where we only really care about one of the tasks
- Pre-training is a type of transfer learning where one objective is used first
- Few-shot, zero-shot learning indicates learning to perform a task with very few, or zero labeled examples for that task

Plethora of Tasks in NLP

- In NLP, there are a plethora of tasks, each requiring different varieties of data
 - Only text: e.g. language modeling
 - Naturally occurring data: e.g. machine translation
 - Hand-labeled data: e.g. most analysis tasks
- And each in many languages, many domains!

Standard Multi-task Learning

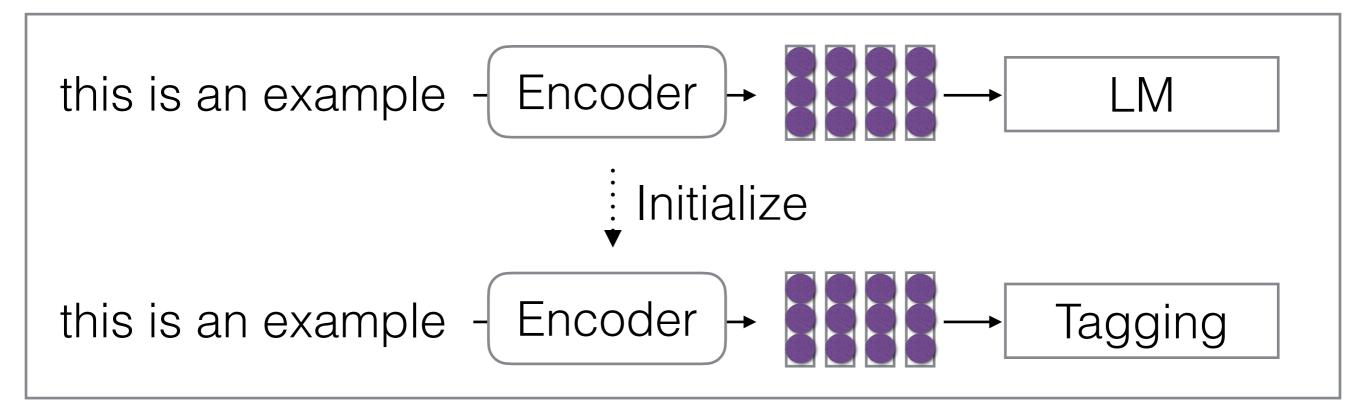
Train representations to do well on multiple tasks at once



 Often as simple as randomly choosing minibatch from one of multiple tasks

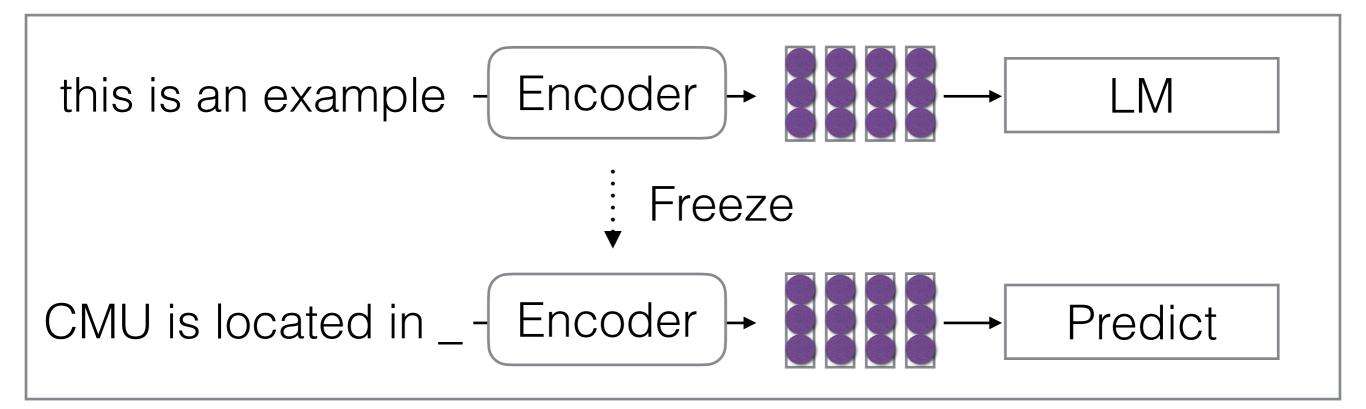
Pre-train and Fine-Tune

• First train on one task, then train on another



Prompting

• Train on LM task, make predictions in textualized tasks



Thinking about Pre-trained Models

Thinking about Pre-trained LMs

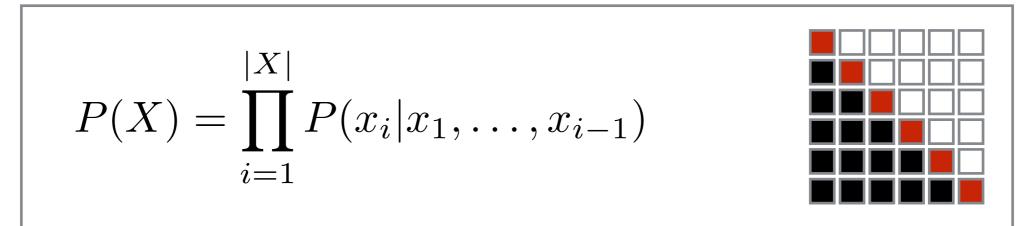
- Many pre-trained LMs have names like BERT, RoBERTa, GPT-3, PaLM
- These often refer to a combination of
 - Model: The underlying neural network architecture
 - Training objective: What objective is used to pretrain
 - **Data:** What data the authors chose to use to train the model
- They papers presenting the models are also often notable for experimental results

Which Model?

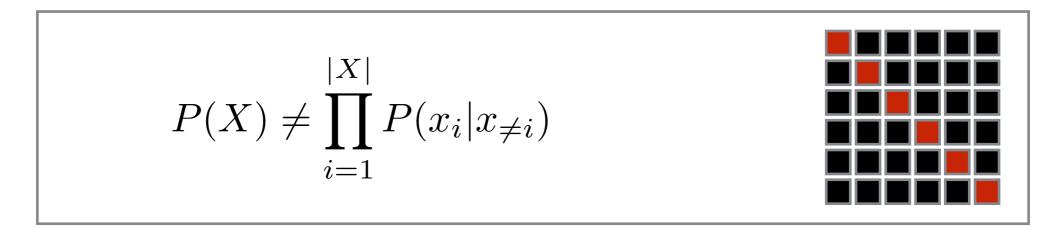
- Usually **Transformer**, although the details vary
- **Size** is an all-important parameter, bigger is usually more performant
- Model details sometimes vary (or are underspecified)

Which Objective?

- Two most common varieties
 - Auto-regressive language modeling -> used more for prompting/text generation



 Masked language modeling -> used more for pretrain + fine-tune



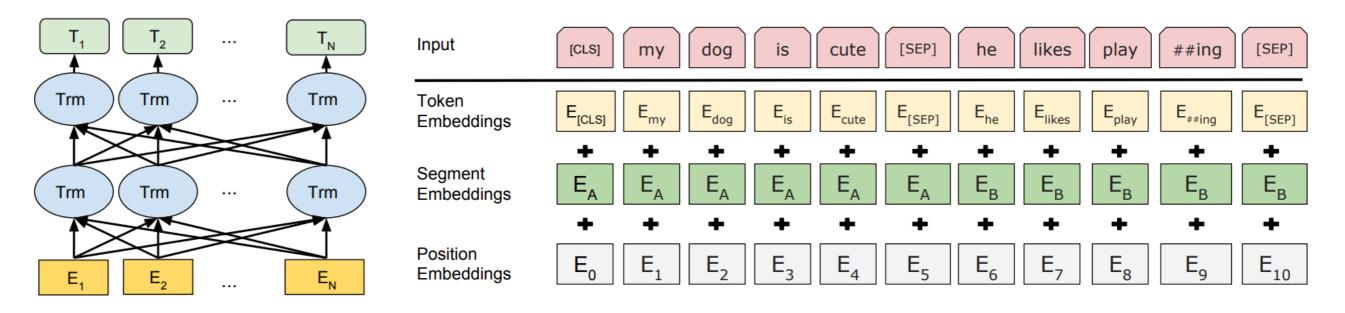
Which Data?

- Data is extremely important, common sources
 - Books corpus a large corpus of books
 - · Wikipedia
 - Common crawl data from the whole internet

Representation Learning through LMs

Masked Language Modeling (BERT) (Devlin et al. 2018)

• **Model:** Multi-layer self-attention. Input sentence or pair, w/ [CLS] token, subword representation



- Objective: Masked word prediction + nextsentence prediction
- Data: BooksCorpus + English Wikipedia

Masked Word Prediction (Devlin et al. 2018)

- 1. predict a masked word
 - 80%: substitute input word with [MASK]
 - 10%: substitute input word with random word
 - 10%: no change
- Like context2vec, but better suited for multi-layer self attention

Consecutive Sentence Prediction (Devlin et al. 2018)

- classify two sentences as consecutive or not:
 - 50% of training data (from OpenBooks) is "consecutive"

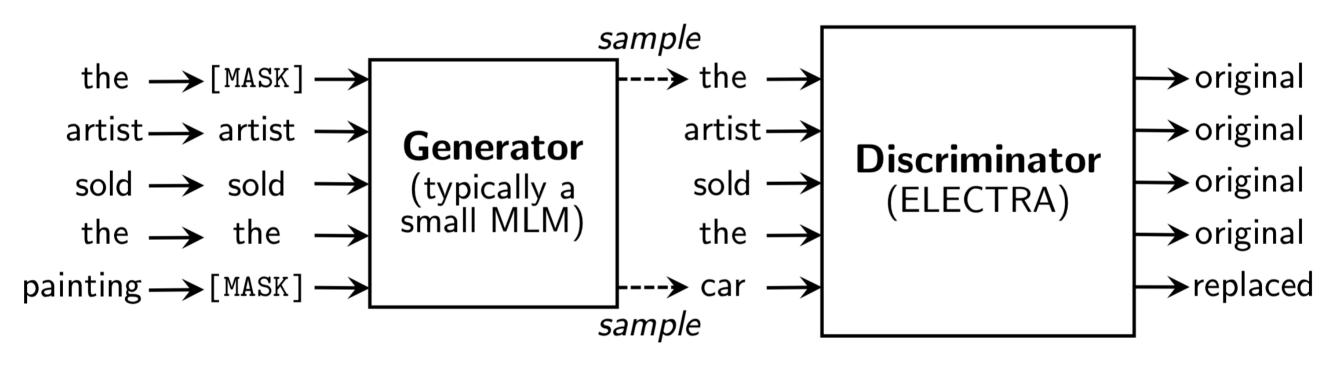
Input = [CLS] the man [MASK] to the store [SEP] Input = [CLS] the man went to [MASK] store [SEP]
penguin [MASK] are flight ##less birds [SEP] he bought a gallon [MASK] milk [SEP]
Label = NotNext Label = IsNext

Hyperparameter Optimization/Data (RoBERTa) (Liu et al. 2019)

- Model: Same as BERT
- **Objective:** Same as BERT, but *train longer* and *drop sentence prediction* objective
- **Data:** BooksCorpus + English Wikipedia
- **Results:** are empirically much better than BERT

Distribution Discrimination (ELECTRA) (Clark et al. 2020)

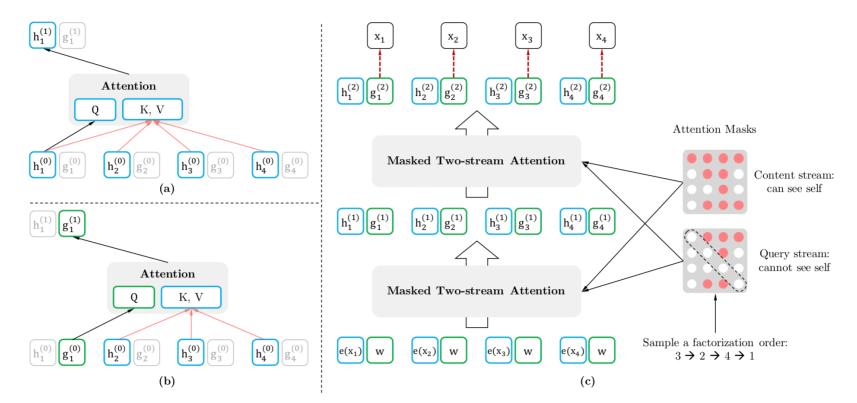
- Model: Same as BERT
- **Objective:** Sample words from language model, try to discriminate which words are sampled



- Data: Same as BERT, or XL-Net (next) for large models
- **Result:** Training much more efficient!

Permutation-based Auto-regressive Model + Long Context (XL-Net) (Yang et al. 2019)

- Model: Same as BERT, but include longer context
- **Objective:** Predict words in order, but different order every time



Data: 39B tokens from Books, Wikipedia and Web

DeBERTa (He et al. 2021)

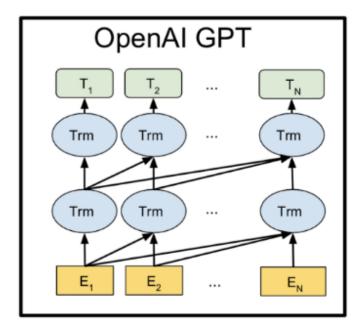
- Model: Transformer model with
 - "disentangled attention" treating relative position and content separately
 - absolute positional embeddings added at end of model
- Objective: Masked language modeling (w/ regularization by perturbing input embeddings)
- Data: 78GB Wikipedia, Reddit, and Subset of Common Crawl
- **Results:** SOTA on SuperGLUE

Compact Pre-trained Models

- Large models are expensive, can we make them smaller?
- ALBERT (Lan et al. 2019): Smaller embeddings, and parameter sharing across all layers
- DistilBERT (Sanh et al. 2019): Train a model to match the distribution of regular BERT

Auto-regressive LMs for Generation/Prompting

GPT-2



- **Model:** Left-to-right transformer (1.5B)
- Training Objective: Standard language modeling
- **Data:** WebText (millions of web pages)
- Results: Impressive results in generation of longform text, and zero shot task completion
- Available open source, easy to use

GPT-3

- **Model:** Left-to-right transformer (175B)
- Training Objective: Standard language modeling
- **Data:** CommonCrawl (1T words)
- Results: Further impressive results in generation of long-form text, and zero shot task completion

PaLM

- **Model:** Left-to-right transformer (540B)
- Training Objective: Standard language modeling
- **Data:** Common crawl (1T words)
- Results: Further impressive results in generation of long-form text, and zero shot task completion

OPT/BLOOM

- Open source large language models (up to 175GB)
- OPT: <u>https://github.com/facebookresearch/</u> <u>metaseq</u>
 - (see also the experiment log!)
- **BLOOM:** <u>https://huggingface.co/bigscience/bloom</u>

Should we be *Pre*-training? (Dery et al. 2021, Dery et al. 2022)

Impacts of Transfer Learning

- **Downstream performance:** Improved downstream task performance
- Faster convergence: Fewer epochs to reach same level of performance
- Data-efficiency: Fewer datapoint required to achieve good performance

Is Pre-train then Fine-tune always appropriate ?

<u>Pros</u>

- One model for all downstream tasks
- Amortize compute burden
- All the benefits of transfer learning

<u>Cons</u>

- Good pre-training performance does not imply good downstream perf
- No free lunch one pretraining objective cannot perform well across all end tasks
- No clear way to crossvalidate pre-training stage

Pre-training design choices

Lots of pre-training design choices

Objective	$\mathbf{Data}(\mathcal{D})$	Transform (\mathcal{T})	Representation (\mathcal{R})	$\mathbf{Output} \ (\mathcal{O})$	
BERT	Out-of-domain	BERT-Op	Bidirectional	Denoise Token	
TAPT	Task data	BERT-Op	Bidirectional	Denoise Token	
DAPT	In-domain	BERT-Op	Bidirectional	Denoise Token	
ELMO	Out-of-domain	No-Op	Left-to-Right	Next Token	
			and Right-to-Left		
GPT	Out-of-domain	No-Op	Left-To-Right	Next Token	
XLNet	Out-of-domain	No-Op	Random factorized	Next Token	
Electra	Neural LM Data	Replace	Bidirectional	Real / Synthetic	
•••	• • •	• • •	• • •	• • •	

Letting the end-task choose

- We can generate many more objectives by taking this view
- Let the end-task choose which objectives are most useful

Data (\mathcal{D})		Transform (\mathcal{T})		Representation (\mathcal{R})		$\textbf{Output} \ (\mathcal{O})$
Out-of-domain		No-Op		Bidirectional		Next Token
In-domain		Replace		Left-to-Right		Real / Synth
Task data	X	Mask	×	Right-to-Left	×	Denoise Token
Neural LM Data		Noising embeds		Rand. factorized		TF-IDF
•••		•••		•••		•••
	I	•		•		

 $\begin{array}{l} \textbf{TAPT} = \{\textbf{Task data} \rightarrow \textbf{BERT-Op} \rightarrow \textbf{Bidirectional} \rightarrow \textbf{Denoise Token} \} \\ \textbf{GPT} = \{\textbf{Out-of-domain} \rightarrow \textbf{No-Op} \rightarrow \textbf{Left-to-Right} \rightarrow \textbf{Next Token} \} \\ \textbf{New-Obj}_1 = \{\textbf{Task data} \rightarrow \textbf{BERT-Op} \rightarrow \textbf{Left-to-Right} \rightarrow \textbf{Denoise Token} \} \\ \textbf{New-Obj}_2 = \{\textbf{In-domain} \rightarrow \textbf{No-Op} \rightarrow \textbf{Random Factorized} \rightarrow \textbf{TF-IDF} \} \end{array}$

•••

Letting the end-task choose

• Choosing can be hard sampling or soft weighting

Table 2: Our framework and **AANG** on tasks **using only task data**. Without using any external data, we are able to get significant average performance improvement over baselines. Superscripts are p-values from paired t-tests (best multitask versus best single-task).

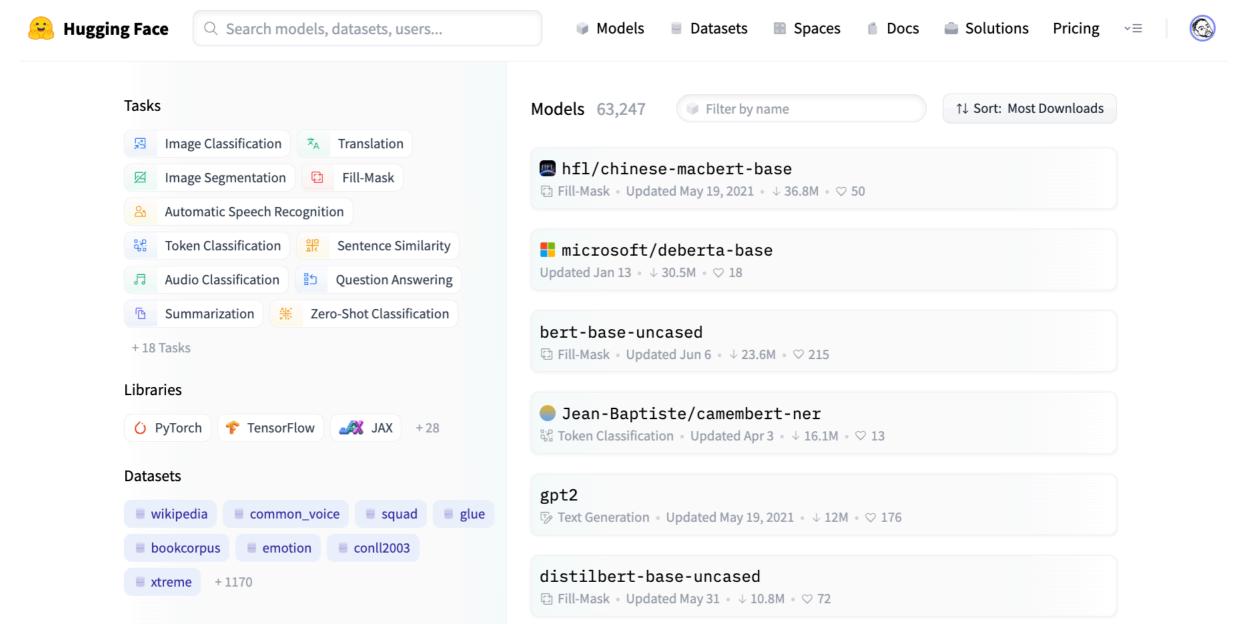
Task Aware	Method	#	CS		BIOMED	NEWS	STANCE	
			ACL-ARC	SCIERC	CHEMPROT	H.PARTISAN	SE-2016-6	AVG
No	RoBERTa TAPT (<mark>Gururangan et all</mark> , 2020) [OURS] Multitask-TD	1 1 24	$66.03_{3.55} \\ 67.74_{3.68} \\ 69.60_{3.80}$	$77.96_{2.96}$ $79.53_{1.93}$ $83.37_{0.58}$	$\begin{array}{c} 82.10_{0.98} \\ 82.17_{0.65} \\ 83.42_{0.26} \end{array}$	$\begin{array}{c}93.39_{2.26}\\93.42_{2.87}\\97.95_{0.73}\end{array}$	$70.37_{1.51} \\ 70.74_{1.21} \\ 71.02_{0.43}$	77.97 78.72 81.07
Yes	X. GPT-style Y. XLNET-style Z. BERT-style (Dery et al., 2021b)	1 1 1	$\begin{array}{c} 67.22_{0.44} \\ 69.76_{2.42} \\ 70.08_{4.70} \end{array}$	$\begin{array}{c} 81.62_{0.84} \\ 81.81_{0.42} \\ 81.48_{0.82} \end{array}$	$83.29_{1.21} \\ 83.39_{0.31} \\ 84.49_{0.50}^{(0.09)}$	$\begin{array}{c} 96.41_{0.73} \\ 96.41_{1.92} \\ 96.84_{1.72} \end{array}$	$70.67_{1.46} \\ 71.18_{0.58} \\ 72.70_{0.60}$	$79.84 \\ 80.51 \\ 81.12$
	[OURS] AANG-[X+Y+Z] [OURS] AANG-TD	3 24	$71.51_{3.19}$ 73.26 ^(0.28) _{1.32}	$82.89_{0.78}$ $82.98_{1.52}^{(0.27)}$	$83.68_{0.45}$ $83.91_{0.32}$	$96.92_{1.26} \\ 98.46_{0.0}^{(0.14)}$	$72.75_{0.82}^{(0.94)}$ $72.46_{1.65}$	81.55 82.21

Practicals of large pretrained models

Huggingface Model Hub

The hugging face model hub is one go-to source for models

https://huggingface.co/models



200010000

Practicals of using large pre-trained models

- Use smaller versions like DistilBert
 - Half the size and very little performance loss
- Gradient accumulation
 - Fitting large batches lead to OOMs run several smaller batches and back-prop to gather gradients before optimizer step
- Selective finetuning
 - Top few layers -> layer-norm layers -> Every thing else

Scaling Laws (Kaplan et al. 2020)

- Language models exhibit slow-fast-slow learning pattern
- Larger models improve in fewer steps

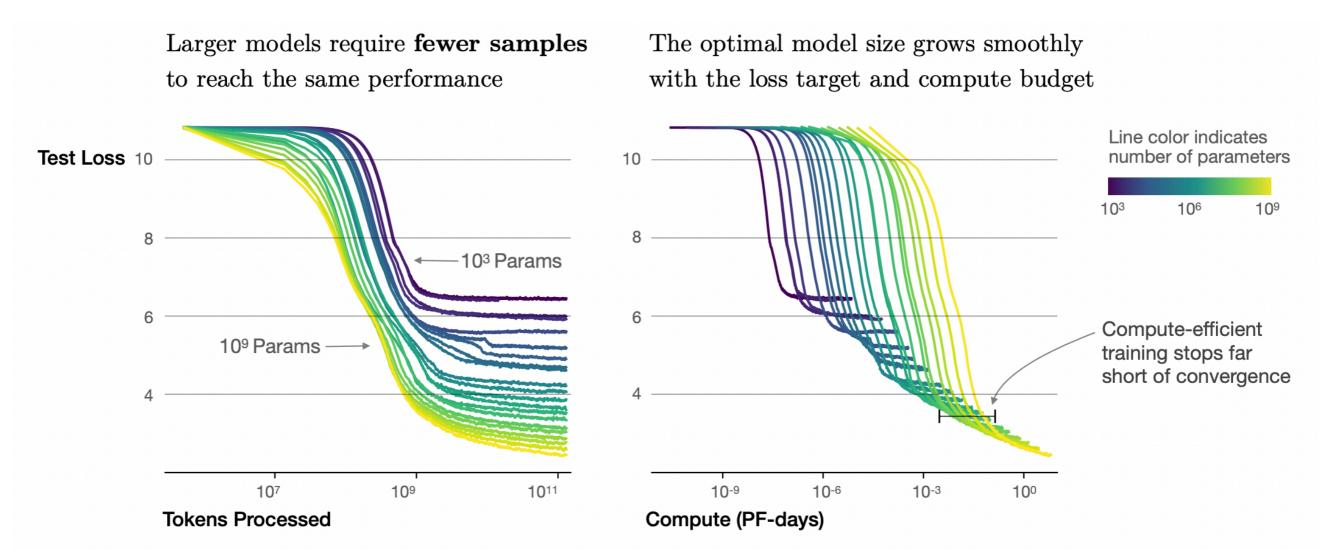


Figure 2 We show a series of language model training runs, with models ranging in size from 10^3 to 10^9 parameters (excluding embeddings).

Questions?