
11-711 Advanced NLP

Dependency Parsing:
Algorithms, Models and Resources

Zhisong Zhang

Outline

● Algorithms: The output decomposition and decoding algorithms.
○ Graph-based
○ Transition-based

● Models: The modeling of the factorized pieces.
○ Feature-based
○ Neural network
○ Pre-trained models

● Resources: Looking closer to the data resources for dependency parsing.
○ Universal dependencies
○ Cross-lingual transfer

Recap.: Constituency and dependency trees

Dep-tree properties:
1. No multi-dege;
2. Head=1;
3. No cycles;
4. (optional) Projective.

Phrase-structure trees: internal nodes for phrases
Dependency trees: only input words as nodes

Algorithms: Overview

● Dependency parsing is a Structured Prediction problem, where we need to
find a way to decompose the complex target.

● Conventionally speaking, there are two categories:
○ Graph-based: Decomposed into individual sub-trees.

○ Transition-based: Decomposed into a series of transitions.

x2

x1 x3

x2

x1

x2

x3
+

x1 x1 x2 x2

x1

x2 x3

x1

x2

x1 x3

Some transition steps
do not introduce
dependency edges.

Algorithms: Graph-based

In graph-based methods, the full tree is decomposed into individual sub-trees.

● Scoring: score(Tree) = \sum_{s} score(SubTree)
● Decoding: T(sent.) = argmax_{T} score(T)

● We will examine the simplest case:

first-order (arc-factored)

score(Tree) ∝ \sum_{(m, h)} score(modifier, head)

Let’s assume we have a
“magic” scoring model.

We have 5 edges here: {root->read, read->I,
read->book, read->., book->the}

Algorithms: Constraints

Let’s look at the properties of a well-formed dependency tree:

Constraints Violation Example Decoding Algorithm

No multiple-edges x1 -> x2; x1 -> x2; Enumeration (Binary class.)

Single-head x1 -> x2 <- x3 Enumeration (Head class.)

No-cycle (acyclic) x1 -> x2; x2 -> x1; Chu-Liu-Edmonds

No-cross (projective) x1 -> x3; x2 -> x4; Eisner’s DP

Dependency-version
of CYK.

x1 x2 x3 x4

Algorithms: Chu-Liu-Edmonds
Exact algorithm for non-projective first-order parsing: (McDonald et al, 2005)

Examples and figures borrowed from (McDonald et al., 2005)

Greedy maximum

Contract

Recursive & Repack

https://aclanthology.org/H05-1066.pdf

Algorithms: Transition-based
Transition-based method performs parsing by a series of (shift-reduce) transitions.

Broadly speaking, transition-based methods are not constrained to shift-reduce
systems: (Bohet et al., 2016): incremental building with a series of actions.

Examples and figures borrowed from Speech
and Language Processing (3rd ed. draft)

See (Nivre, 2003) and (Yamada and Matsumoto, 2003) as typical examples.

https://aclanthology.org/P16-1015.pdf
https://aclanthology.org/W03-3017.pdf
https://aclanthology.org/W03-3023.pdf

Algorithms: Easy-first

Non-directional easy-first parsing: (Goldberg and Elhadad, 2010)

Examples and figures borrowed from (Goldberg and Elhadad, 2010)

No explicit stack/buffer, or
with a stack/buffer of
non-reduced tokens.

Only two types of actions
(AL & AR), both create
new arcs.

https://aclanthology.org/N10-1115.pdf

Algorithms: Tagging

With proper encoding, a dependency tree can be cast as a sequence, and the
problem can be formulated as a sequence tagging problem: (Strzyz et al., 2019)

Examples and figures borrowed from (Strzyz et al., 2019)

In some way, still similar
to a transition system with
attaching transitions. But
not necessarily built
incrementally.

https://aclanthology.org/N19-1077.pdf

Algorithms: There’s much more

A great tutorial (EACL 2014) on parsing algorithms (McDonald and Nivre, 2014).

● Graph-based:
○ Projective higher-order parsing (more complex CKYs).
○ Non-projective higher-order parsing (approximate methods).
○ Pruning methods.

● Transition-based:
○ Different varieties of transition systems.
○ DP with transition-based parsing.
○ Spurious ambiguity and dynamic oracle.

And surely there are ways to combine them: (Zhang and Clark, 2008)

(* Nice title: “A Tale of Two Parsers: investigating and combining graph-based and transition-based
dependency parsing using beam-search”)

https://cl.lingfil.uu.se/~nivre/eacl14.html
https://aclanthology.org/D08-1059.pdf

Algorithms: Summary
Borrowed from (McDonald and Nivre, 2014)

Typically:

● Graph-based:
○ Local factorization.
○ Global inference.
○ Mostly O(N^3)+.

● Transition-based:
○ Local normalization.
○ Rich output features.
○ Linear time (with shift-reduce).

These two can reach similar results,
but with different characteristics.

Things change now
when talking about time
complexity.

https://aclanthology.org/J11-1007.pdf

Models: Overview

The above only mentions inference algorithms, all of them need a model to do
the scoring of the decomposed parts:

Graph-based: score(m, h) Transition-based: score(action|state)

How to design the input representations and the scoring model?

● Feature-based: with manually designed features and linear model
● (Early) neural network: with atom input features and NN scorer.
● With contextualized representations, especially with pre-trained encoders.

Models: Feature based
Borrowed from (McDonald et al., 2005)

Things are similar for transition-based methods.

I[pron] read[verb] the[det] book[noun] .[punct] -> score(book, read)

● a) “p-read&p-verb”, “p-read”, “p-verb”, “c-book&c-noun”, …
● b) “p-read&p-verb&c-book&c-noun”, “p-read&c-book&c-noun”, …
● c) “p-verb&b-det&c-noun, “p-verb&p-det+1&c-det-1&c-noun”, ...

Sparsity problem! There can be millions of features!

https://aclanthology.org/P05-1012.pdf
https://aclanthology.org/P11-2033.pdf

Models: Neural network

Only atomic inputs are
fine, no longer manual
feature combinations.

Features are automatically
combined inside NN.

Borrowed from (Chen and Manning, 2014)

Things are similar for graph-based methods.

https://aclanthology.org/D14-1082.pdf
https://aclanthology.org/P15-1031.pdf

Models: With contextualized representations

Remember that for parsing, we have full input sentence as the input!

Borrowed from (Kiperwasser and Goldberg, 2016)

Again, things are similar for transition-based ones.

The inputs to the final
scorer now contains the
information of the full
sentence.

https://aclanthology.org/Q16-1023.pdf

Models: Deep Biaffine Scorer

Probably nowadays the “standard” parsing scorer architecture.

Borrowed from (Dozat and Manning, 2017)

https://arxiv.org/pdf/1611.01734.pdf

Models: With pre-trained models

As you can imagine, with recent
pre-trained contextualized embeddings:

Deep Contextualized Word Embeddings in
Transition-Based and Graph-Based Dependency
Parsing – A Tale of Two Parsers Revisited,
(Kulmizev et al. 2019)

● Contextualized word embeddings allow parsers to
pack information about global sentence structure
into local feature representations.

● They benefit transition-based parsers more than
graph-based parsers, making the two approaches
virtually equivalent in terms of both accuracy and
error profile.

Figures borrowed from (Kulmizev et al, 2019)

https://aclanthology.org/D19-1277.pdf

Models: Summary

● A “huge change” to the parsing models?
○ Maybe NOPE (only changing the scorers)?
○ The basic parsing paradigms are almost the same.

● However, this indeed brings changes:
○ Somehow blur the distinctions between graph- and transition-based methods.
○ When talking about computational complexity:

■ (CPU-oriented), graph O(N^3) > transition O(N).
■ (GPU-oriented), graph (easier to parallelize) <= transition (not GPU-friendly)?

○ Standard parsing model: “Bert (and Bert’s friends) + Deep-Biaffine”

● What stills remains interesting is now back to the data resources.

Resources: Overview

There have been 6 CoNLL shared tasks related with dependency parsing:

Language-specific

Universal Dependencies

Resources: Overview

There can be multiple ways of constructing dependency trees, for example, for
English, multiple ways of converting from constituency trees to dependencies:

Penn2Malt -> LTH-Convertor (for CoNLL tasks) ;; SD (stanford) -> UD

There are many things that need to be specified:

Go to school Go to school

VMOD PMOD obl

case
It’s hard to say which one is
“correct” or “better”, but we need
to arrive at something consistent.

https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://nlp.cs.lth.se/software/treebank_converter/
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf

Resources: UD

Universal dependencies: https://universaldependencies.org/

Update every half year.

Cover 100+ languages.

https://universaldependencies.org/

Resources: UD

The table lists the 37 universal
syntactic relations used in UD
v2. It is a revised version of the
relations originally described in
Universal Stanford
Dependencies: A
cross-linguistic typology (de
Marneffe et al. 2014).

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Resources: UD

“Universal Dependencies (UD) is
a project that is developing
cross-linguistically consistent
treebank annotation for many
languages, with the goal of
facilitating multilingual parser
development, cross-lingual
learning, and parsing research
from a language typology
perspective.”

Resources: UD + Cross-lingual Transfer

● Cross-lingual transfer: Transfer from high-resource languages to
low-resource ones. (* UD provides a great test-bed for this!)

● One specific interest thing is zero-shot transfer, where no trees for the target
languages are available.

● This can be achieved with aligned multilingual word embeddings, or ...

Parser

English
EmbeddingsEn Text En Tree

French
EmbeddingsFr Text Fr Tree

Aligned

Resources: Multilingual contextualized representations

…, or simply multilingual contextualized pre-trained encoders, which have
been shown quite effective for cross-lingual transfer (Wu and Dredze, 2019).

Syntax
Decoder

En Text En Tree

Fr Text Fr Tree

Multilingual
Encoder

Still an interesting question: how BERT/mBERT encodes
syntax so that simply multilingual pre-training seems to be
able to “align” syntactic information?

https://aclanthology.org/D19-1077.pdf

Resources: Problems

However, UD is not without problems:

● There can be consistency problems (an open collaboration project).

● Many treebanks are converted from constituency treebanks rather than from
directly dependency annotations.

● English-centric (remember it’s derived from Stanford Dependencies).

● Are the UD choices the most reasonable ones?
○ Arguments and Adjuncts (Przepiórkowski and Patejuk, 2018)
○ Coordinate Structures (Kanayama et al., 2018)

https://aclanthology.org/C18-1324.pdf
https://aclanthology.org/W18-6009.pdf

Summary for dependency parsing

● Algorithms: graph-based & transition-based
● Models: feature-based -> NN -> pre-training
● Resources: cross-lingual consistent UD

● Nice online demo: http://lindat.mff.cuni.cz/services/udpipe/
● Nice parsers: stanza, udpipe, udify
● More on UD: https://universaldependencies.org/ ; EACL17 Tutorial

● Questions?

http://lindat.mff.cuni.cz/services/udpipe/
https://stanfordnlp.github.io/stanza/
https://ufal.mff.cuni.cz/udpipe
https://github.com/Hyperparticle/udify
https://universaldependencies.org/
http://universaldependencies.org/eacl17tutorial/

