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Dependency Parsing:
Algorithms, Models and Resources
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Outline

e Algorithms: The output decomposition and decoding algorithms.

o Graph-based
o Transition-based

e Models: The modeling of the factorized pieces.

o Feature-based
o Neural network
o Pre-trained models

e Resources: Looking closer to the data resources for dependency parsing.
o Universal dependencies
o Cross-lingual transfer



Recap.: Constituency and dependency trees

Phrase-structure trees: internal nodes for phrases Dep-tree properties:
Dependency trees: only input words as nodes 1. No multi-dege;
2. Head=1;
g 3. No cycles;
4. (optional) Projective.
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constituency (aka phrase-structure) tree dependency tree



Algorithms: Overview

e Dependency parsing is a Structured Prediction problem, where we need to
find a way to decompose the complex target.

e Conventionally speaking, there are two categories:
o Graph-based: Decomposed into individual sub-trees.
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o Transition-based: Decomposed into a series of transitions. .
___Some transition steps

do not introduce
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Algorlth mSs. Graph-based Let’s assume we have a

“magic” scoring model.

In graph-based methods, the full tree is deconiposed into individual sub-trees.

e Scoring: score(Tree) = \sum_{s) score(SubTree)
e Decoding: T(sent.) = argmax_{T} score(T)

) ) _ | read the book .
e \We will examine the simplest case: a

<root>

first-order (arc-factored)

score(Tree) o< \sum_{(m, h)} score(modifier, head)

book :
obj punct
NOUNE PUNCT

We have 5 edges here: {root->read, read->I, the
read->book, read->., book->the}



Algorithms: Constraints

Let’s look at the properties of a well-formed dependency tree:

1 | Constraints Violation Example Decoding Algorithm
No multiple-edges x1 ->x2; x1 -> x2,; Enumeration (Binary class.)
Single-head x1 ->x2 <-x3 Enumeration (Head class.)
No-cycle (acyclic) x1 ->x2; x2 -> x1; Chu-Liu-Edmonds

~ | No-cross (projective) x1 => x3; X2 -> x4; Eisner’s DP

/><\ Dependency-version
of CYK.

x1 x2 x3 x4



Algorith ms: Ch u_Li u_Ed mOndS Examples and figures borrowed from (McDonald et al., 2005)

Exact algorithm for non-projective first-order parsing: (McDonald et al, 2005)
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https://aclanthology.org/H05-1066.pdf

Algorithms: Transition-based

Examples and figures borrowed from Speech
and Language Processing (3rd ed. draft)

Transition-based method performs parsing by a series of (

) transitions.

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 | [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
i [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

Broadly speaking, transition-based methods are not constrained to shift-reduce
systems: (Bohet et al., 2016): incremental building with a series of actions.

See (Nivre, 2003) and (Yamada and Matsumoto. 2003) as typical examples.



https://aclanthology.org/P16-1015.pdf
https://aclanthology.org/W03-3017.pdf
https://aclanthology.org/W03-3023.pdf

Examples and figures borrowed from (Goldberg and Elhadad, 2010)

Algorithms: Easy-first

Non-directional easy-first parsing: (Goldberg and Elhadad, 2010)
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https://aclanthology.org/N10-1115.pdf

Examples and figures borrowed from (Strzyz et al., 2019)

Algorithms: Tagging

With proper encoding, a dependency tree can be cast as a sequence, and the
problem can be formulated as a sequence tagging problem: (Strzyz et al., 2019)

root l' dobj
( *nsub \\ [ + \
<ROOT=> Ali lce ate an apple
5 . In some way, still similar
Naive positional: (@dey]  [(2,dob)) to a transition system with
Rel. positional: ~ [(+Lnsubj)]  [(2roo)]  [(+1.det)] [(-2,doby)] attaching transitions. But

not necessarily built

Rel. PoS-based: [(V+l nsub])] [(ROOT -1 root)] [(N,+1.det)] [(V.-1,dobj) | incrementally

((det)] [(<\>.dobj)]

Bracketing-based:

Figure 1: Types of encoding on an example tree.


https://aclanthology.org/N19-1077.pdf

Algorithms: There’'s much more

A great tutorial (EACL 2014) on parsing algorithms (McDonald and Nivre, 2014).

e Graph-based:
o Projective higher-order parsing (more complex CKYs).
o Non-projective higher-order parsing (approximate methods).
o Pruning methods.
e Transition-based:
o Different varieties of transition systems.
o  DP with transition-based parsing.
o  Spurious ambiguity and dynamic oracle.

And surely there are ways to combine them: (Zhang and Clark, 2008)

(* Nice title: “A Tale of Two Parsers: investigating and combining graph-based and transition-based
dependency parsing using beam-search”)


https://cl.lingfil.uu.se/~nivre/eacl14.html
https://aclanthology.org/D08-1059.pdf

Borrowed from (McDonald and Nivre, 2014)

Algorithms: Summary

LAS:83.8v. 83.6

[McDonald & Nivre 2007]
Typ|Ca| |y Graph-based Parsers Transition-based Parsers
2008 Global Inference Local Inference
Global Learning Local Learnng
o G ra ph_ba Sed . Local Feature Scope Global Feature Scope
o Local factorization.
O Global inference. higher-order chart parsing beam search
. pruning perceptron
o Mostly O(N”A3)+. Things change now ILP dynamic oracles
ven when talkin im dual decomp dynamic programming
() TranSItlon-based: en ta ) g about time mildly non-projective more features
com pIeX|ty. etc. etc.
o Local normalization.
o _Rich output features. Y Y
. . . . Graph-based Parsers Transition-based Parsers
O Linear time (with shlft-reduce). 2014 Global Inference Global Inference
Global Learnng Global Learnng
Global Feature Scope Global Feature Scope

These two can reach similar results,
but with different characteristics.

LAS: 85.8v.85.5

[Zhang et al. 2013]

**Evaluated on overlapping 9 languages in studies**


https://aclanthology.org/J11-1007.pdf

Models: Overview

The above only mentions inference algorithms, all of them need a model to do
the scoring of the decomposed parts:

Graph-based: score(m, h) Transition-based: score(action|state)

How to design the input representations and the scoring model?

e Feature-based: with manually designed features and linear model
e (Early) neural network: with atom input features and NN scorer.
e With contextualized representations, especially with pre-trained encoders.



Borrowed from (McDonald et al., 2005)

M Od e I S. F eatu re based Things are similar for transition-based methods.
b
a) : ©)
Basic Uni-gram Features Basic Big-ram Features In Between POS Features
p-word, p-pos p-word, p-pos, c-word, c-pos 5-pos, B-pos, C-pos
p-word g -‘p;,oos r’ dc-?\c::r’ dc'f (I))Sos Surrounding Word POS Features
p-pos — -pos, p- -pos-1, c-
c-word, c-pos p-word, p-pos, c-pos PP os,lp post1, c-pos 11’ ©pos
c-word p-word, p-pos, c-word EelDe SIS W BT
R D, cawand p-pos, p-pos+1, c-pos, c-pos+1
p 5505, 0H0S p-pos-1, p-pos, c-pos, c-pos+1
[[pron] read[verb] the[det] book[noun] .[punct] -> score(book, read)

EE 11 EE 11 LE 1]

e a) “p-read&p-verb”, “p-read”, “p-verb”, “c-book&c-noun’, ...

e b) “p-read&p-verb&c-book&c-noun”, “p-read&c-book&c-noun’, ...
e ) “‘p-verb&b-det&c-noun, “p-verb&p-det+1&c-det-1&c-noun’, ...

Sparsity problem! There can be millions of features!


https://aclanthology.org/P05-1012.pdf
https://aclanthology.org/P11-2033.pdf

Borrowed from (Chen and Manning, 2014)

Models: Neural network

Things are similar for graph-based methods.

Softmax layer:
p = softmax(Wsah) [.’..] _
- — Features are automatically
( combined inside NN.

Hidden layer: [ N N
h = WPz + Wizt + Wiz + b)?

Input layer: [z, 2! 2!] E = ;
= - - "~ Only atomic inputs are
words POS tags arc labels  fine, no longer manual
Stack Buffer feature combinations.
Configuration ROOT has_VBZ good_JJ contro NN ...
<~ nsubj

He_PRP


https://aclanthology.org/D14-1082.pdf
https://aclanthology.org/P15-1031.pdf

Borrowed from (Kiperwasser and Goldberg, 2016)

Models: With contextualized representations

Remember that for parsing, we have full input sentence as the input!

I Vthc I [ Vbrown ‘ Vfox | | Vjumped '7//_ l V* |
P P s RS /5 £ pe e i s . )
The inputs to the final
..... scorer now contains the
LSTM" LSTM" LSTM" LSTM' = LSTM" information of the full

sentence.

Xthe xbrown xfox X Jumped Xa

Again, things are similar for transition-based ones.


https://aclanthology.org/Q16-1023.pdf

Borrowed from (Dozat and Manning, 2017)

Models: Deep Biaffine Scorer

Probably nowadays the “standard” parsing scorer architecture.

H (arc-dep) @1 U (arc) H (arc-head) S(are)
T
Lesdly 201 ose 000
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Embeddings: x;
root ROOT Kim NNP


https://arxiv.org/pdf/1611.01734.pdf

Figures borrowed from (Kulmizev et al, 2019)

Models: With pre-trained models

09 |

MSTParser

W ssesseasescses MaltParser

As you can imagine, with recent
pre-trained contextualized embeddings:

o
~
T

Deep Contextualized Word Embeddings in
Transition-Based and Graph-Based Dependency sk

Dependency precision

Parsing — A Tale of Two Parsers Revisited,

(Kulmizev et al. 2019) Dependency length

tr - tr+f - tr+B
model . gr . grit = griB

e Contextualized word embeddings allow parsers to .o
pack information about global sentence structure '
into local feature representations. 0.8
i
L i, N
e They benefit transition-based parsers more than 0.7 T e B o
graph-based parsers, making the two approaches —
virtually equivalent in terms of both accuracy and 0.6
error profile. root 1 2 5 6 7 8 9 >-10

3 4
Dependency Length


https://aclanthology.org/D19-1277.pdf

Models: Summary

e A “huge change” to the parsing models?

o Maybe NOPE (only changing the scorers)?
o The basic parsing paradigms are almost the same.

e However, this indeed brings changes:
o Somehow blur the distinctions between graph- and transition-based methods.
o  When talking about computational complexity:
m (CPU-oriented), graph O(N”3) > transition O(N).
m (GPU-oriented), graph (easier to parallelize) <= transition (not GPU-friendly)?
o Standard parsing model: “Bert (and Bert’s friends) + Deep-Biaffine”

e \What stills remains interesting is now back to the data resources.



Resources: Overview

There have been 6 CoNLL shared tasks related with dependency parsing:

2018

2017

2009

2008

2007

2006

Multilingual Parsing from Raw Text to Universal

Ltili L
Dependencies muttitingua

Multilingual Parsing from Raw Text to Universal

Ltiti L
Dependencies muttitingua

Syntactic and Semantic Dependencies in Multiple L
multilingual
Languages

Joint Parsing of Syntactic and Semantic .
: English
Dependencies

Dependency Parsing: Multilingual & Domain s
5 multilingual
Adaptation

Multi-Lingual Dependency Parsing multilingual

J

Universal Dependencies

> Language-specific




Resources: Overview

There can be multiple ways of constructing dependency trees, for example, for
English, multiple ways of converting from constituency trees to dependencies:

Penn2Malt -> LTH-Convertor (for CoNLL tasks) ;; SD (stanford) -> UD

There are many things that need to be specified:

vHon NMOD obl It’s hard to say which one is
caff/\ “correct” or “better”, but we need

Go to school Go to  school to arrive at something consistent.


https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://nlp.cs.lth.se/software/treebank_converter/
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf

Resources: UD

Universal dependencies: https://universaldependencies.org/

The data is released through LINDAT/CLARIN.

e The next release (v2.9) is scheduled for November 15, 2021 (data freeze on November 1). Cover 100+ Ianguages'
» Version 2.8 treebanks are available at http://hdl.handle.net/11234/1-3687. 202 treebanks, 114 languages, released May 15, 2021.
» Version 2.7 treebanks are archived at http://hdl.handle.net/11234/1-3424. 183 treebanks, 104 languages, released November 15, 2020.
« Version 2.6 treebanks are archived at http://hdl.handle.net/11234/1-3226. 163 treebanks, 92 languages, released May 15, 2020.
» Version 2.5 treebanks are archived at http://hdl.handle.net/11234/1-3105. 157 treebanks, 90 languages, released November 15, 2019.
« Version 2.4 treebanks are archived at http://hdl.handle.net/11234/1-2988. 146 treebanks, 83 languages, released May 15, 2019.
« Version 2.3 treebanks are archived at http://hdl.handle.net/11234/1-2895. 129 treebanks, 76 languages, released November 15, 2018.
« Version 2.2 treebanks are archived at http://hdl.handle.net/11234/1-2837. 122 treebanks, 71 languages, released July 1, 2018.
« Version 2.1 treebanks are archived at http://hdl.handle.net/11234/1-2515. 102 treebanks, 60 languages, released November 15, 2017.
« Version 2.0 treebanks are archived at http://hdl.handle.net/11234/1-1983. 70 treebanks, 50 languages, released March 1, 2017.
o Test data 2.0 are archived at http://hdl.handle.net/11234/1-2184. 81 treebanks, 49 languages, released May 18, 2017.
« Version 1.4 treebanks are archived at http://hdl.handle.net/11234/1-1827. 64 treebanks, 47 languages, released November 15, 2016.
« Version 1.3 treebanks are archived at http://hdl.handle.net/11234/1-1699. 54 treebanks, 40 languages, released May 15, 2016.
« Version 1.2 treebanks are archived at http://hdl.handle.net/11234/1-1548. 37 treebanks, 33 languages, released November 15, 2015.
« Version 1.1 treebanks are archived at http://hdl.handle.net/11234/LRT-1478. 19 treebanks, 18 languages, released May 15, 2015.
« Version 1.0 treebanks are archived at http://hdl.handle.net/11234/1-1464. 10 treebanks, 10 languages, released January 15, 2015.
« In general, we intend to have regular treebank releases every six months. The v2.0 and v2.2 releases were brought forward because of their
usage in the CoNLL 2017 and 2018 Multilingual Parsing Shared Tasks.

Update every half year.


https://universaldependencies.org/

Resources: UD

The table lists the 37 universal
syntactic relations used in UD
v2. It is a revised version of the
relations originally described in
Universal Stanford
Dependencies: A
cross-lingquistic typology (de
Marneffe et al. 2014).

advmod *

vocative discourse cop
expl mark
dislocated

nmod acl amod det
appos clf

nummod case

conj fixed list orphan punct
cc flat parataxis goeswith root

compound reparandum dep


http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf

Resources: UD

“Universal Dependencies (UD) is
a project that is developing
cross-linguistically consistent
freebank annotation for many
languages, with the goal of
facilitating multilingual parser
development, cross-lingual
learning, and parsing research
from a language typology
perspective.”

!det

punct»
obl»
nsubj:pass case
!aux:pass !—«'jet
was

chased by the cat )

o e

punct»
nsubj:pass obl
qexpl:pass !«case

npecnegeaile oOr KOTKara

punct
aux:pM ’N—

honén kockou

!nsubj:pass

unct»
obl g
oo s

jagades av katten




Resources: UD + Cross-lingual Transfer

e Cross-lingual transfer: Transfer from high-resource languages to
low-resource ones. (* UD provides a great test-bed for this!)

e One specific interest thing is zero-shot transfer, where no trees for the target
languages are available.

e This can be achieved with aligned multilingual word embeddings, or ...




Resources: Multilingual contextualized representations

..., or simply multilingual contextualized pre-trained encoders, which have
been shown quite effective for cross-lingual transfer (Wu and Dredze, 2019).

Still an interesting question: how BERT/mBERT encodes
syntax so that simply multilingual pre-training seems to be
able to “align” syntactic information?


https://aclanthology.org/D19-1077.pdf

Resources: Problems

However, UD is not without problems:

e There can be consistency problems (an open collaboration project).

e Many treebanks are converted from constituency treebanks rather than from
directly dependency annotations.

e English-centric (remember it's derived from Stanford Dependencies).

e Are the UD choices the most reasonable ones?

o Arguments and Adjuncts (Przepiorkowski and Patejuk, 2018)
o Coordinate Structures (Kanayama et al., 2018)



https://aclanthology.org/C18-1324.pdf
https://aclanthology.org/W18-6009.pdf

Summary for dependency parsing

e Algorithms: graph-based & transition-based
Models: feature-based -> NN -> pre-training
e Resources: cross-lingual consistent UD

Nice online demo: http://lindat.mff.cuni.cz/services/udpipe/
Nice parsers: stanza, udpipe, udify
e More on UD: https://universaldependencies.ora/ ; EACL17 Tutorial

e Questions?


http://lindat.mff.cuni.cz/services/udpipe/
https://stanfordnlp.github.io/stanza/
https://ufal.mff.cuni.cz/udpipe
https://github.com/Hyperparticle/udify
https://universaldependencies.org/
http://universaldependencies.org/eacl17tutorial/

