11-711 Advanced NLP

Dependency Parsing: Algorithms, Models and Resources

Zhisong Zhang

Outline

- Algorithms: The **output decomposition** and decoding algorithms.
 - Graph-based
 - Transition-based
- Models: The **modeling** of the factorized pieces.
 - Feature-based
 - Neural network
 - Pre-trained models
- Resources: Looking closer to the **data resources** for dependency parsing.
 - Universal dependencies
 - Cross-lingual transfer

Recap.: Constituency and dependency trees

Phrase-structure trees: internal nodes for phrases Dependency trees: only input words as nodes

S

3. No cycles;

4. (optional) Projective.

Dep-tree properties:

1. No multi-dege;

constituency (aka phrase-structure) tree

dependency tree

Algorithms: Overview

- Dependency parsing is a **Structured Prediction** problem, where we need to find a way to **decompose** the complex target.
- Conventionally speaking, there are **two categories**:
 - Graph-based: Decomposed into individual sub-trees.

• Transition-based: Decomposed into a series of **transitions**.

Algorithms: Graph-based

Let's assume we have a "magic" scoring model.

In graph-based methods, the full tree is decomposed into individual sub-trees.

- Scoring: score(Tree) = \sum_{s} score(SubTree)
- **Decoding**: T(sent.) = argmax_{T} score(T)
- We will examine the simplest case:

first-order (arc-factored)

 $score(Tree) \propto \sum_{(m, h)} score(modifier, head)$

We have 5 edges here: {root->read, read->l, read->book, read->., book->the}

Algorithms: Constraints

Let's look at the **properties** of a well-formed dependency tree:

	Constraints	Violation Example	Decoding Algorithm		
	No multiple-edges	x1 -> x2; x1 -> x2;	Enumeration (Binary class.)		
	Single-head	x1 -> x2 <- x3	Enumeration (Head class.)		
	No-cycle (acyclic)	x1 -> x2; x2 -> x1;	Chu-Liu-Edmonds		
7	No-cross (projective)	x1 -> x3; x2 -> x4;	Eisner's DP		
	x1 x2 x3 x4		Dependency-version of CYK.		

Algorithms: Chu-Liu-Edmonds

Exact algorithm for non-projective first-order parsing: (McDonald et al, 2005)

Algorithms: Transition-based

Transition-based method performs parsing by a series of (shift-reduce) transitions.

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	Π	LEFTARC	(morning \leftarrow flight)
7	[root, book, the, flight]		LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]	[]	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

Broadly speaking, transition-based methods are **not constrained to** shift-reduce systems: (<u>Bohet et al., 2016</u>): **incremental** building with a series of actions.

Algorithms: Easy-first

Non-directional **easy-first** parsing: (<u>Goldberg and Elhadad, 2010</u>)

Algorithms: Tagging

With proper encoding, a dependency tree can be **cast as a sequence**, and the problem can be formulated as a sequence tagging problem: (<u>Strzyz et al., 2019</u>)

In some way, still similar to a transition system with attaching transitions. But not necessarily built incrementally.

Figure 1: Types of encoding on an example tree.

Algorithms: There's much more

A great tutorial (EACL 2014) on parsing algorithms (McDonald and Nivre, 2014).

- Graph-based:
 - Projective higher-order parsing (more complex CKYs).
 - Non-projective higher-order parsing (approximate methods).
 - Pruning methods.
- Transition-based:
 - Different varieties of transition systems.
 - DP with transition-based parsing.
 - Spurious ambiguity and dynamic oracle.

And surely there are ways to combine them: (Zhang and Clark, 2008)

(* Nice title: "**A Tale of Two Parsers**: investigating and combining graph-based and transition-based dependency parsing using beam-search")

Algorithms: Summary

Typically:

- Graph-based:
 - Local factorization.
 - Global inference.
 - Mostly O(N^3)+.
- Transition-based:
 - Local normalization.
 - Rich output features.
 - Linear time (with shift-reduce)

<u>These two</u> can reach similar results, but with different characteristics.

LAS: 83.8 v. 83.6 [McDonald & Nivre 2007]

	2008	Graph-bas Global Ir Global L Local Feat	e d Parsers nference .earning ure Scope	Transition-ba Local In Local Lo Global Feat	nsed Parsers ference earnng ture Scope	
Things change when talking ab complexity.	now out time		higher-order cha pruning ILP dual decomp mildly non-projec etc.	art parsing ctive	beam search perceptron dynamic oracles dynamic programming more features etc.	
ft-reduce).	2014	Graph-bas Global Ir Global I	ed Parsers nference ₋earnng	Transition-ba Global In Global L	nsed Parsers Inference Learnng	
nilar results,		Global Feature Scope LAS: 85.8 v. 85.5 [Zhang et al. 2013]		Global Feat	Global Feature Scope	

Evaluated on overlapping 9 languages in studies

Models: Overview

The above only mentions **inference algorithms**, all of them need **a model** to do the **scoring** of the decomposed parts:

Graph-based: **score**(m, h)

Transition-based: **score**(action|state)

How to design the input representations and the scoring model?

- Feature-based: with manually designed features and linear model
- (Early) **neural network**: with atom input features and NN scorer.
- With contextualized representations, especially with pre-trained encoders.

Models: Feature based

Borrowed from (McDonald et al., 2005)

Things are similar for transition-based methods.

Basic Uni-	gram Features
p-word, p-p	OS
p-word	
p-pos	
c-word, c-p	OS
c-word	
c-pos	

b)

Basic Big-ram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

c)

	In Between POS Features
	p-pos, b-pos, c-pos
	Surrounding Word POS Features
	p-pos, p-pos+1, c-pos-1, c-pos
	p-pos-1, p-pos, c-pos-1, c-pos
	p-pos, p-pos+1, c-pos, c-pos+1
	p-pos-1, p-pos, c-pos, c-pos+1
_	

I[pron] read[verb] the[det] book[noun] .[punct] -> score(book, read)

- a) "p-read&p-verb", "p-read", "p-verb", "c-book&c-noun", ...
- b) "p-read&p-verb&c-book&c-noun", "p-read&c-book&c-noun", ...
- c) "p-verb&b-det&c-noun, "p-verb&p-det+1&c-det-1&c-noun", ...

Sparsity problem! There can be millions of features!

Models: Neural network

Borrowed from (Chen and Manning, 2014)

Things are similar for graph-based methods.

Models: With contextualized representations

Remember that for parsing, we have full input sentence as the input!

Models: Deep Biaffine Scorer

Probably nowadays the "standard" parsing scorer architecture.

Models: With pre-trained models

As you can imagine, with recent **pre-trained contextualized embeddings**:

Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing – **A Tale of Two Parsers Revisited**, (<u>Kulmizev et al. 2019</u>)

- Contextualized word embeddings allow parsers **to pack information about global sentence structure** into local feature representations.
- They benefit transition-based parsers more than graph-based parsers, making the two approaches **virtually equivalent** in terms of both accuracy and error profile.

Models: Summary

- A "huge change" to the parsing models?
 - **Maybe NOPE** (only changing the scorers)?
 - The **basic parsing paradigms** are almost the same.
- However, this indeed brings changes:
 - Somehow **blur the distinctions** between graph- and transition-based methods.
 - When talking about computational **complexity**:
 - (CPU-oriented), graph $O(N^3) >$ transition O(N).
 - GPU-oriented), graph (easier to parallelize) <= transition (not GPU-friendly)?</p>
 - Standard parsing model: "Bert (and Bert's friends) + Deep-Biaffine"
- What stills remains interesting is now back to the data resources.

Resources: Overview

There have been 6 CoNLL shared tasks related with dependency parsing:

Resources: Overview

There can be multiple ways of **constructing dependency trees**, for example, for English, multiple ways of converting from constituency trees to dependencies:

Penn2Malt -> LTH-Convertor (for CoNLL tasks) ;; SD (stanford) -> UD

There are many things that **need to be specified**:

It's hard to say which one is "correct" or "better", but we need to arrive at something consistent.

Resources: UD

Universal dependencies: https://universaldependencies.org/

The data is released through LINDAT/CLARIN.

- The next release (v2.9) is scheduled for November 15, 2021 (data freeze on November 1).
- Version 2.8 treebanks are available at http://hdl.handle.net/11234/1-3687. 202 treebanks, 114 languages, released May 15, 2021.
- Version 2.7 treebanks are archived at http://hdl.handle.net/11234/1-3424. 183 treebanks, 104 languages, released November 15, 2020.

Cover 100+ languages.

- Version 2.6 treebanks are archived at http://hdl.handle.net/11234/1-3226. 163 treebanks, 92 languages, released May 15, 2020.
- Version 2.5 treebanks are archived at http://hdl.handle.net/11234/1-3105. 157 treebanks, 90 languages, released November 15, 2019.
- Version 2.4 treebanks are archived at http://hdl.handle.net/11234/1-2988. 146 treebanks, 83 languages, released May 15, 2019.
- Version 2.3 treebanks are archived at http://hdl.handle.net/11234/1-2895. 129 treebanks, 76 languages, released November 15, 2018.
- Version 2.2 treebanks are archived at http://hdl.handle.net/11234/1-2837. 122 treebanks, 71 languages, released July 1, 2018.
- Version 2.1 treebanks are archived at http://hdl.handle.net/11234/1-2515. 102 treebanks, 60 languages, released November 15, 2017.
- Version 2.0 treebanks are archived at http://hdl.handle.net/11234/1-1983. 70 treebanks, 50 languages, released March 1, 2017.
 - Test data 2.0 are archived at http://hdl.handle.net/11234/1-2184. 81 treebanks, 49 languages, released May 18, 2017.
- Version 1.4 treebanks are archived at http://hdl.handle.net/11234/1-1827. 64 treebanks, 47 languages, released November 15, 2016.
- Version 1.3 treebanks are archived at http://hdl.handle.net/11234/1-1699. 54 treebanks, 40 languages, released May 15, 2016.
- Version 1.2 treebanks are archived at http://hdl.handle.net/11234/1-1548. 37 treebanks, 33 languages, released November 15, 2015.
- Version 1.1 treebanks are archived at http://hdl.handle.net/11234/LRT-1478. 19 treebanks, 18 languages, released May 15, 2015.
- Version 1.0 treebanks are archived at http://hdl.handle.net/11234/1-1464. 10 treebanks, 10 languages, released January 15, 2015.
- In general, we intend to have regular treebank releases every six months. The v2.0 and v2.2 releases were brought forward because of their usage in the <u>CoNLL 2017 and 2018 Multilingual Parsing Shared Tasks</u>.

Update every half year.

Resources: UD

The table lists the **37 universal syntactic relations** used in UD v2. It is a revised version of the relations originally described in <u>Universal Stanford</u> <u>Dependencies: A</u> <u>cross-linguistic typology</u> (de Marneffe *et al.* 2014).

	Nominals	Clauses	Modifier words	Function Words
Core arguments	<u>nsubj</u> obj iobj	<u>csubj</u> ccomp xcomp		
Non-core dependents	<u>obl</u> <u>vocative</u> <u>expl</u> dislocated	<u>advcl</u>	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	<u>acl</u>	amod	det clf case
Coordination	MWE	Loose	Special	Other
<u>conj</u> <u>cc</u>	fixed flat compound	<u>list</u> parataxis	orphan goeswith reparandum	punct root dep

Resources: UD

"Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective."

Resources: UD + Cross-lingual Transfer

- **Cross-lingual** transfer: **Transfer** from high-resource languages to low-resource ones. (* UD provides a great test-bed for this!)
- One specific interest thing is **zero-shot transfer**, where no trees for the target languages are available.
- This can be achieved with aligned multilingual word embeddings, or ...

Resources: Multilingual contextualized representations

..., or simply **multilingual contextualized pre-trained encoders**, which have been shown quite effective for cross-lingual transfer (<u>Wu and Dredze, 2019</u>).

Still an interesting question: how BERT/mBERT encodes syntax so that simply multilingual pre-training seems to be able to "align" syntactic information?

Resources: Problems

However, UD is not without problems:

- There can be **consistency problems** (an open collaboration project).
- Many treebanks are **converted** from constituency treebanks rather than from directly dependency annotations.
- English-centric (remember it's derived from Stanford Dependencies).
- Are the UD choices the most reasonable ones?
 - Arguments and Adjuncts (<u>Przepiórkowski and Patejuk, 2018</u>)
 - Coordinate Structures (Kanayama et al., 2018)

Summary for dependency parsing

- Algorithms: graph-based & transition-based
- Models: feature-based -> NN -> pre-training
- **Resources**: cross-lingual consistent UD

- Nice online demo: <u>http://lindat.mff.cuni.cz/services/udpipe/</u>
- Nice parsers: stanza, udpipe, udify
- More on UD: <u>https://universaldependencies.org/</u>; EACL17 <u>Tutorial</u>

• Questions?