CS11-711 Advanced NLP

PCFG Parsing

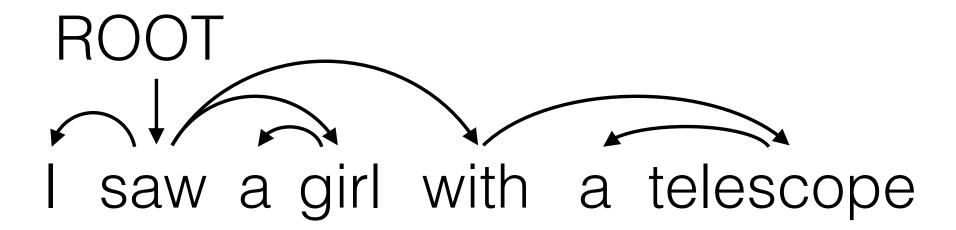
Hao Zhu

Site

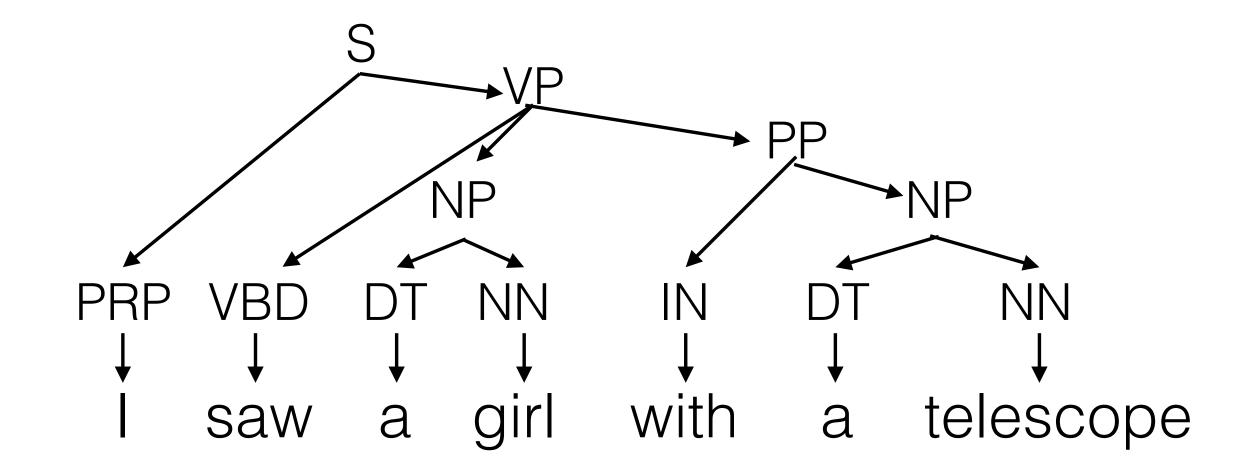
https://phontron.com/class/anlp2021/

Two Types of Linguistic Structure

• Dependency: focus on relations between words

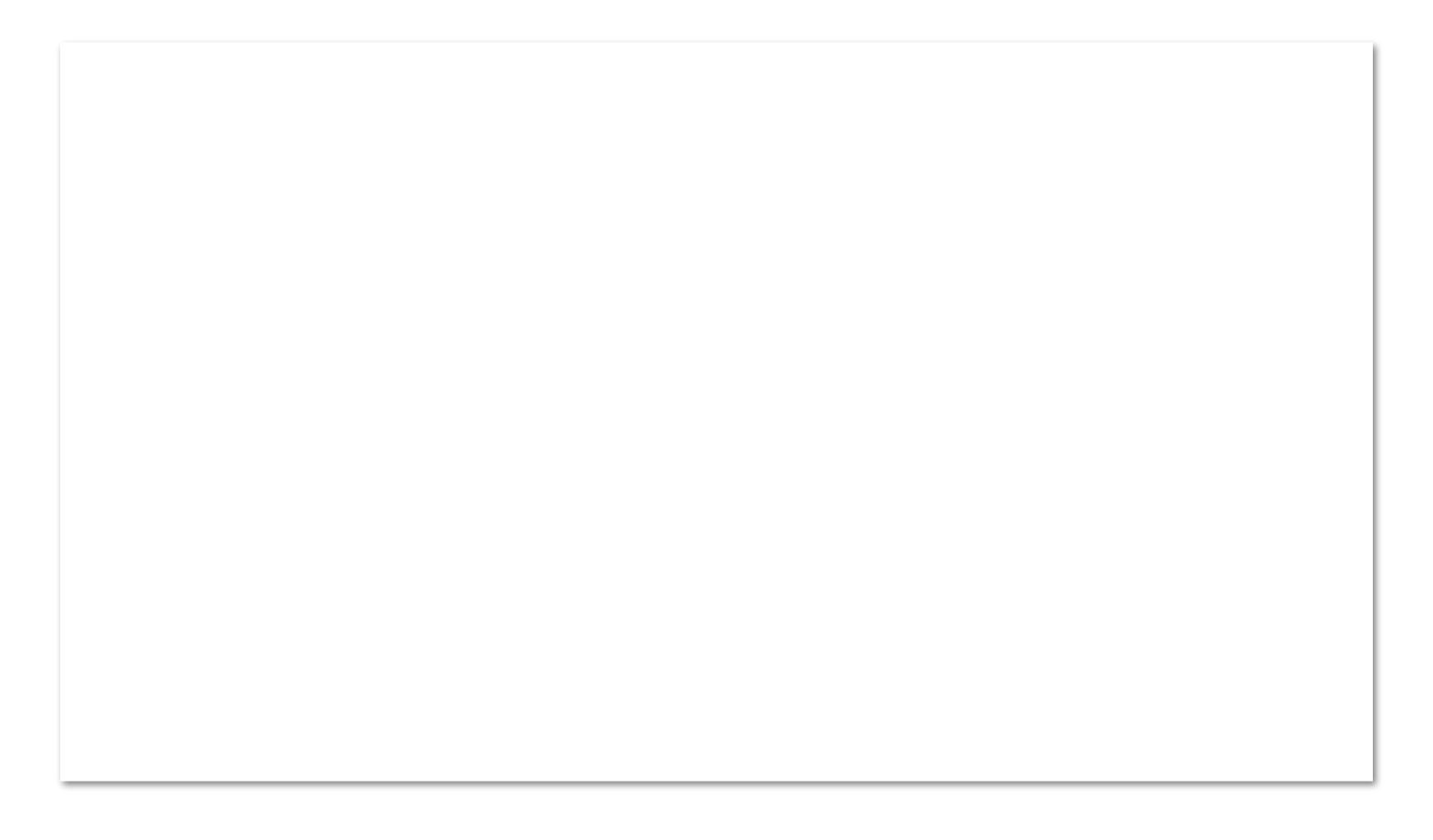


• Phrase structure: focus on the structure of the sentence



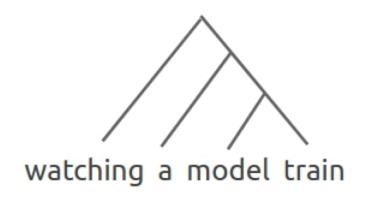
Grammar Induction (Unsupervised Parsing)

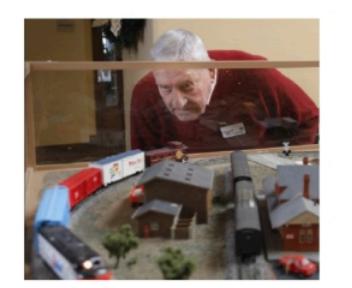
Learning a set of (probabilistic) grammar rules

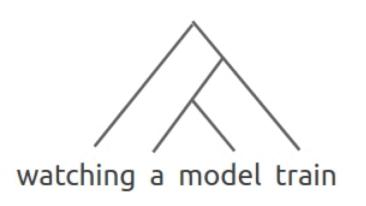


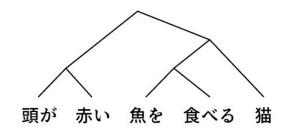
Typical grammar induction methods

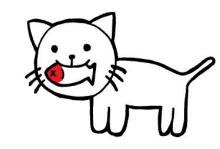
unsupervised constituency and dependency parsing

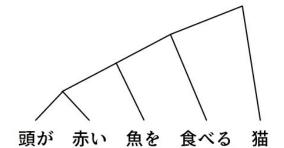


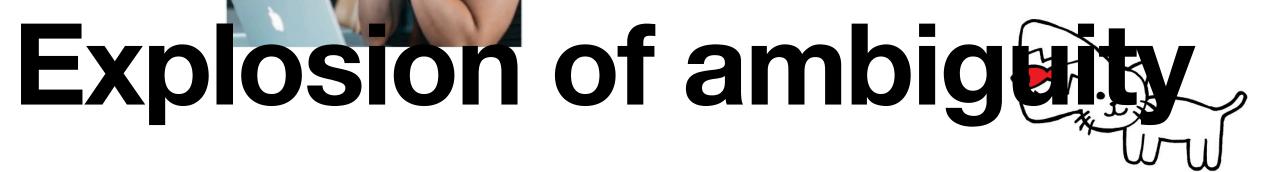


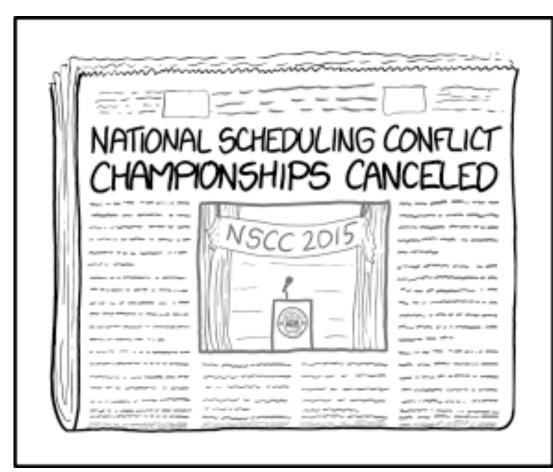


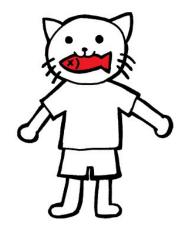


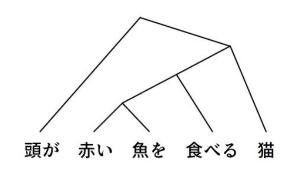


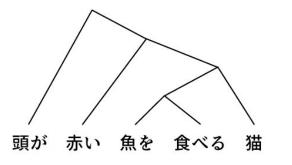










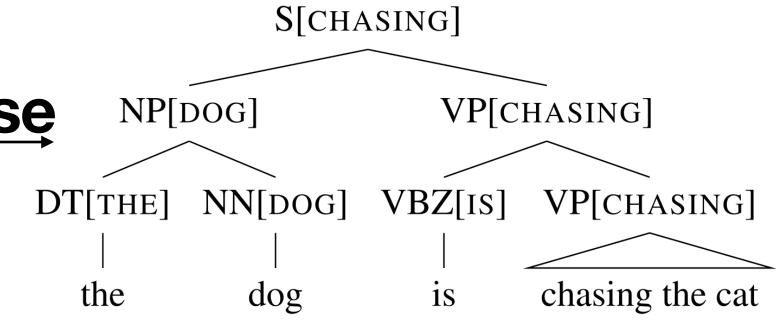


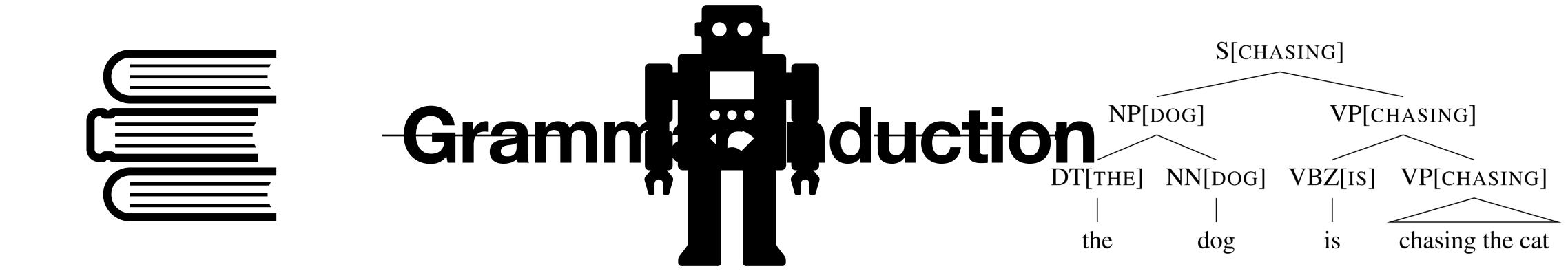
Probabilistic parsing

- First try parsing without any weird rules, throwing them in only if needed.
- Better: every rule has a weight.
 - A tree's weight is total weight of all its rules.
 - Pick the overall lightest parse of sentence.
- Best: train the weights!



Mystery: humar pearn to parse without and g to parse D'





CFG definition

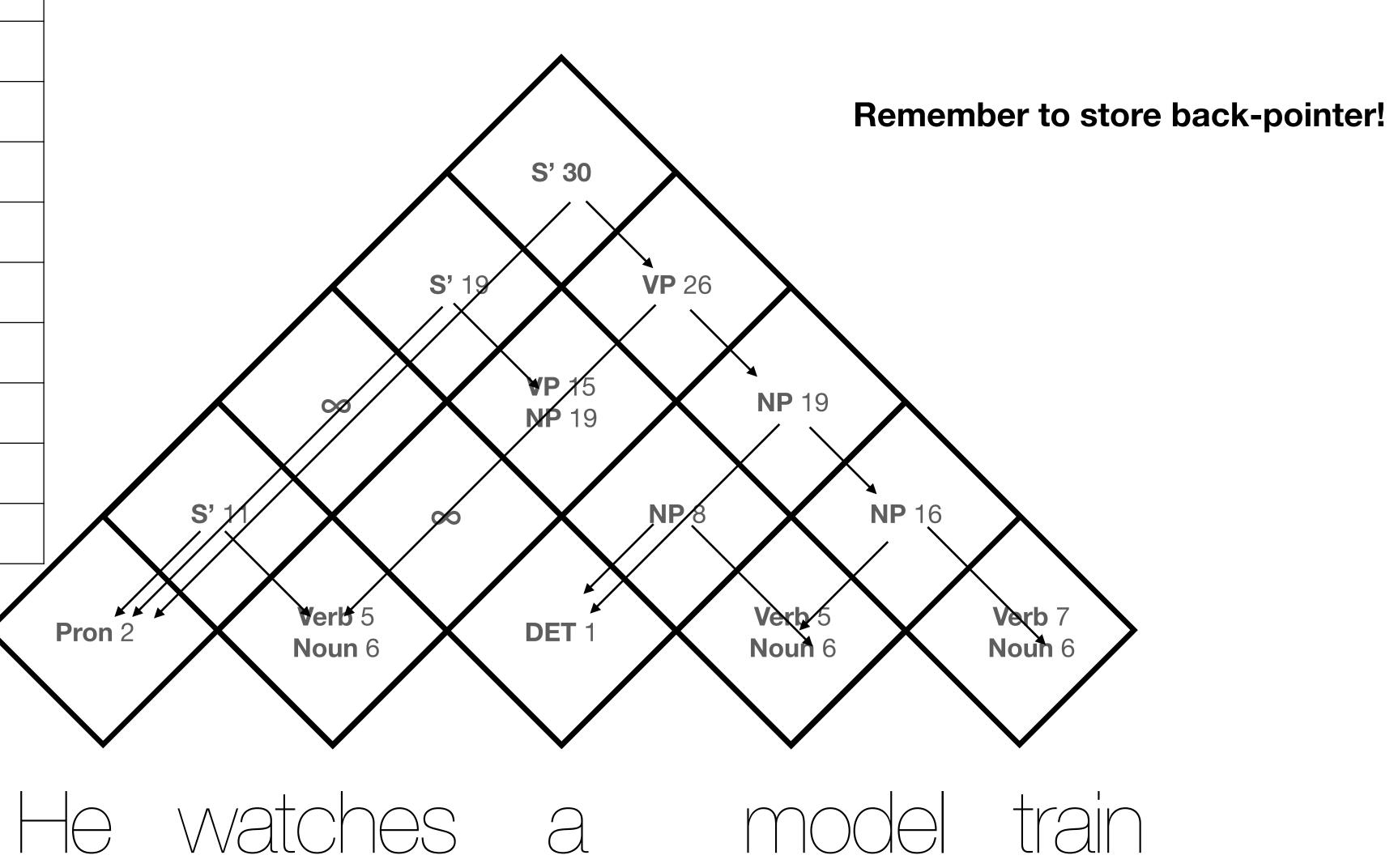
•
$$\mathcal{G} = (S, \mathcal{N}, \mathcal{P}, \Sigma, \mathcal{R})$$

- \mathcal{N} : Set of nonterminals (constituent labels) WLOG, only consider binary branching; Chomsky Normal Form
- \mathscr{P} : Set of preterminals (part-of-speech/tags)
- Σ : Set of terminals (words) $S \to A, / A \in \mathcal{N}$ $A \in \mathcal{N}, B, C \in \mathcal{N} \cup \mathcal{P}$
- S: Start symbol $T \to \alpha, \qquad T \in \mathcal{P}$
- \mathcal{R} : Set of rules

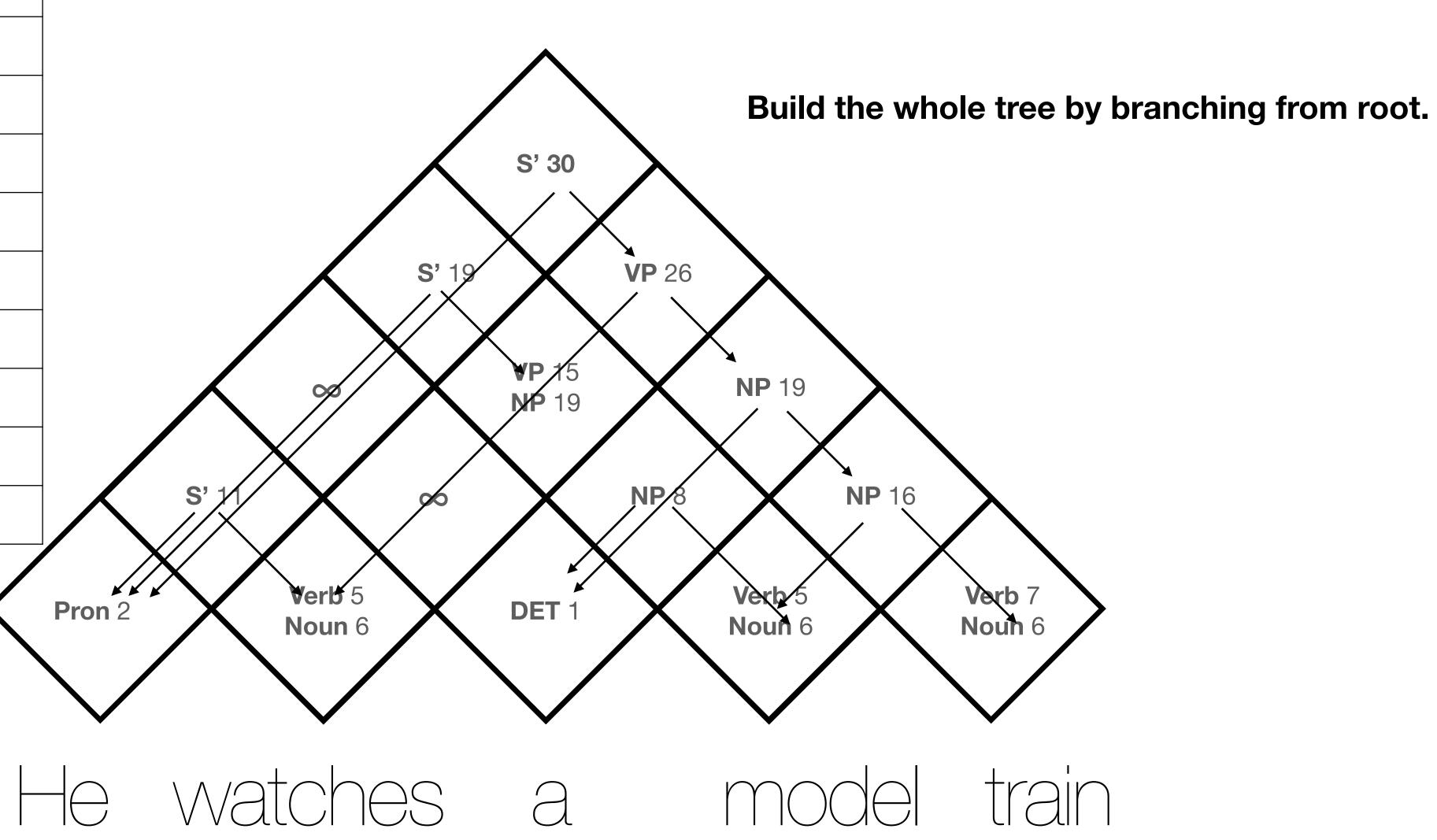
Probalistic CFG

- For every rule, assign a probability to it.
- The summation of the probabilities of the rules with the same left hand non-terminal X is 1: $\sum_{V} \pi(X \to Y) = 1$
- How to get the most probable tree given the probabilities of the rules?
 - Dynamic Programming

Rule	-log prob
S' →Pron Verb	4
S' →Pron VP	2
S' →NP VP	2
NP →NP Verb	5
NP→Det Noun	2
NP→Det NP	2
NP→Noun Noun	4
VP→Noun NP	5
VP→Verb NP	2
VP→VP NP	2



Rule	-log prob
S' →Pron Verb	4
S' →Pron VP	2
S' →NP VP	2
NP →NP Verb	5
NP→Det Noun	2
NP→Det NP	2
NP→Noun Noun	4
VP→Noun NP	5
VP→Verb NP	2
VP→VP NP	2



CYK algorithm

 The probability of a constituent with a non-terminal is often called inside probability

•
$$\beta_A(x, y) = \min_{k, B, C} (-\log \pi(A \to BC) + \beta_B(x, k) + \beta_C(k+1, y))$$

Complexity?

CYK algorithm

 We can use the same CKY algorithm to calculate the marginal probability of a sentence through

•
$$\beta_A(x, y) = -\log \sum_{k,B,C} exp(\log \pi(A \to BC) - \beta_B(x, k) - \beta_C(k+1, y))$$

- What else can it do?
 - Recognizer: $\beta_A(x,y) = \bigvee_{k,B,C} (A \to BC) \in \mathcal{R} \land \beta_B(x,k) \land \beta_C(k+1,y)$
- A general form?

CYK algorithm

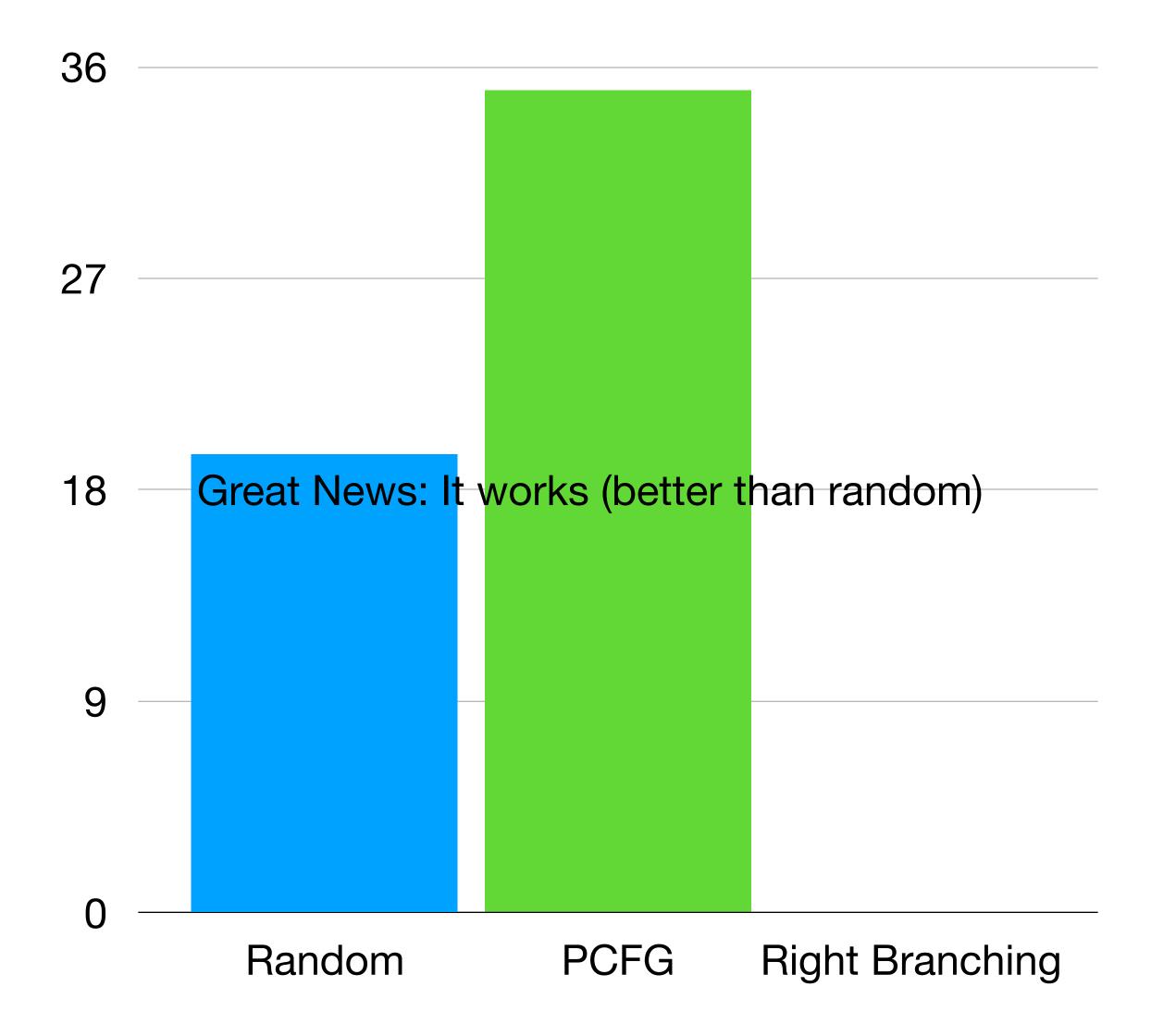
Semiring Parsing

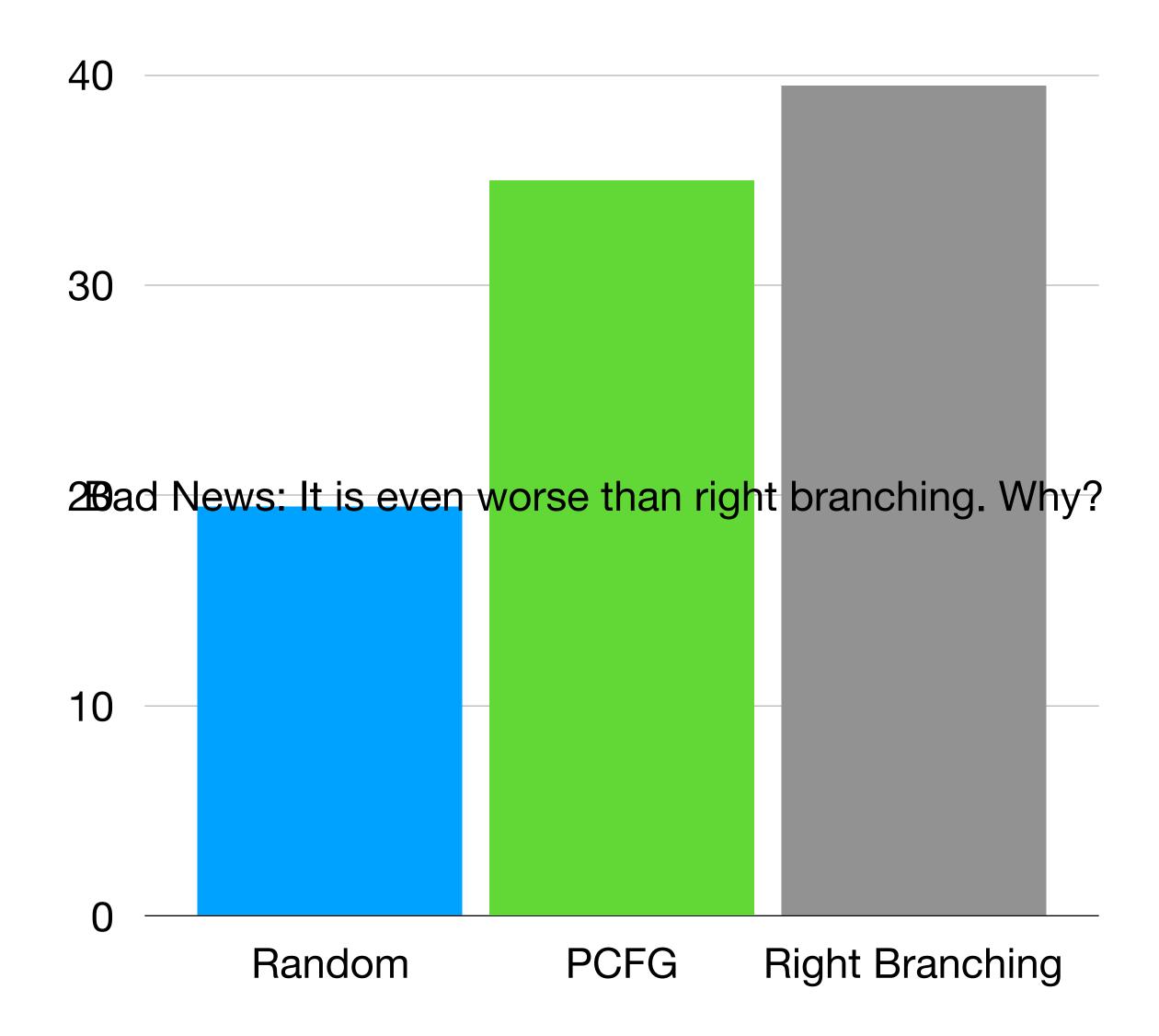
	weights	\oplus	\otimes	0	1
total prob	[0, 1]	+	X	0	1
max prob	[0, 1]	max	X	0	1
min -logp	[0, ∞]	min	+	∞	0
log prob	[-∞, 0]	logsumexp	+	-∞	0
recognizer	T/F	or	and	F	T

Optimizing PCFGs

- Traditional methods: inside-outside algorithm
- Good news: You can directly optimize the log prob calculated by CKY with autograd with the same effect and time complexity.
 - Optional reading: Inside-Outside and Forward-Backward Algorithms Are Just Backprop
- Similar to language models, we optimize the log probability of the sentence:

•
$$\mathcal{L} = -\log \sum_{T_x} p(T_x)$$





Neural PCFGs

Neural parameterization for PCFGs

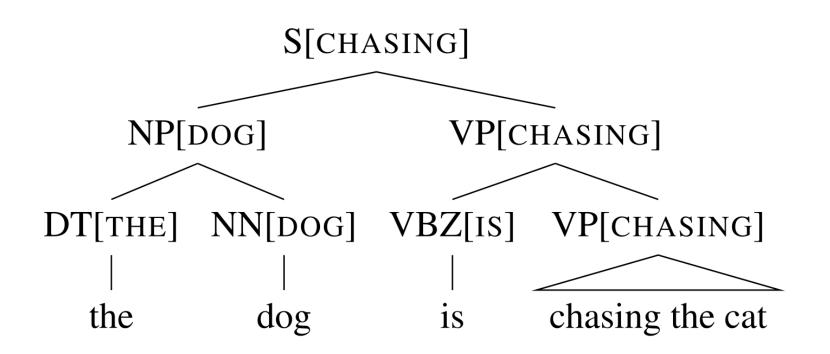
$$\pi_{T o w} = \text{NeuralNet}(\mathbf{w}_T) = \frac{\exp(\mathbf{u}_w^\top f(\mathbf{w}_T))}{\sum_{w' \in \Sigma} \exp(\mathbf{u}_{w'}^\top f(\mathbf{w}_T))}$$

$$\pi_{T o w} \propto \exp\left(egin{array}{cccc} \mathbf{u}_w^ op & f(\mathbf{w}_T) \\ & & ext{output emb.} \end{array}
ight)$$

- parameter sharing through distributed representations
- same training method

Neural L-PCFGs

You can further improve Neural PCFGs by adding head annotations



$$S \to A, \qquad A \in \mathcal{N}$$

$$A \to BC, \quad A \in \mathcal{N}, B, C \in \mathcal{N} \cup \mathcal{P}$$

$$T \to \alpha, \qquad T \in \mathcal{P}$$

$$1 S \to A[\alpha], A \in \mathcal{N}$$

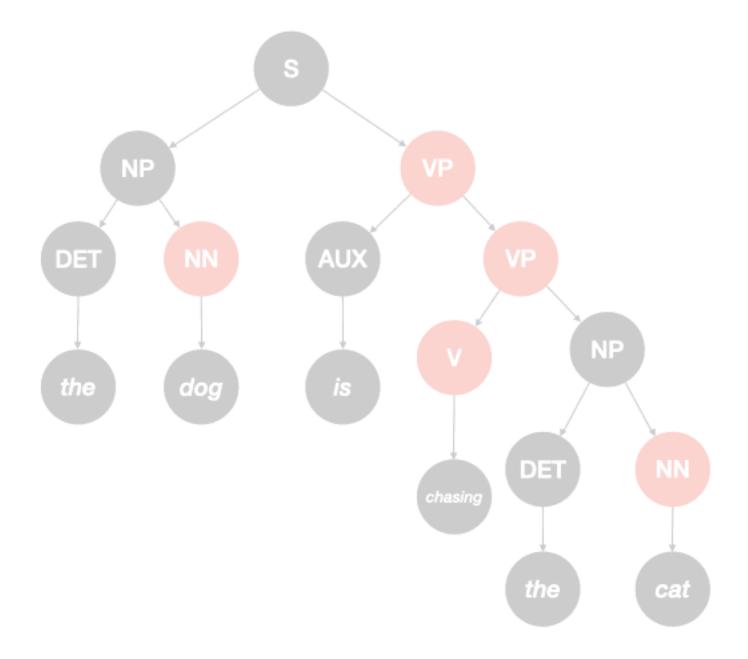
$$21) A[\alpha] \to B[\alpha] C[\beta], \quad A \in \mathcal{N}, B, C \in \mathcal{N} \cup \mathcal{P}$$

$$\boxed{\mathbf{3}} T[\alpha] \to \alpha, \qquad T \in \mathcal{P}$$

Neural L-PCFGs

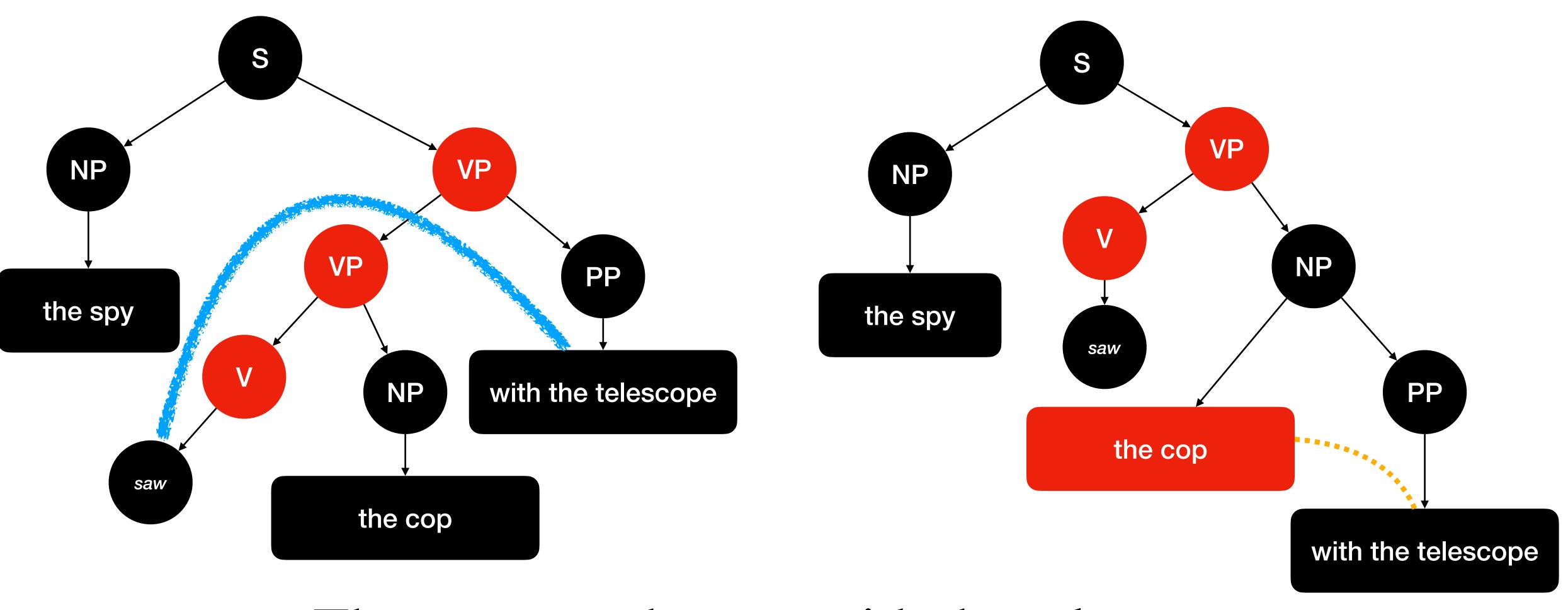
 L-PCFGs did not work well because they have even MORE parameters than PCFGs

P(Tree|sentence)



Limitation of lexical dependencies

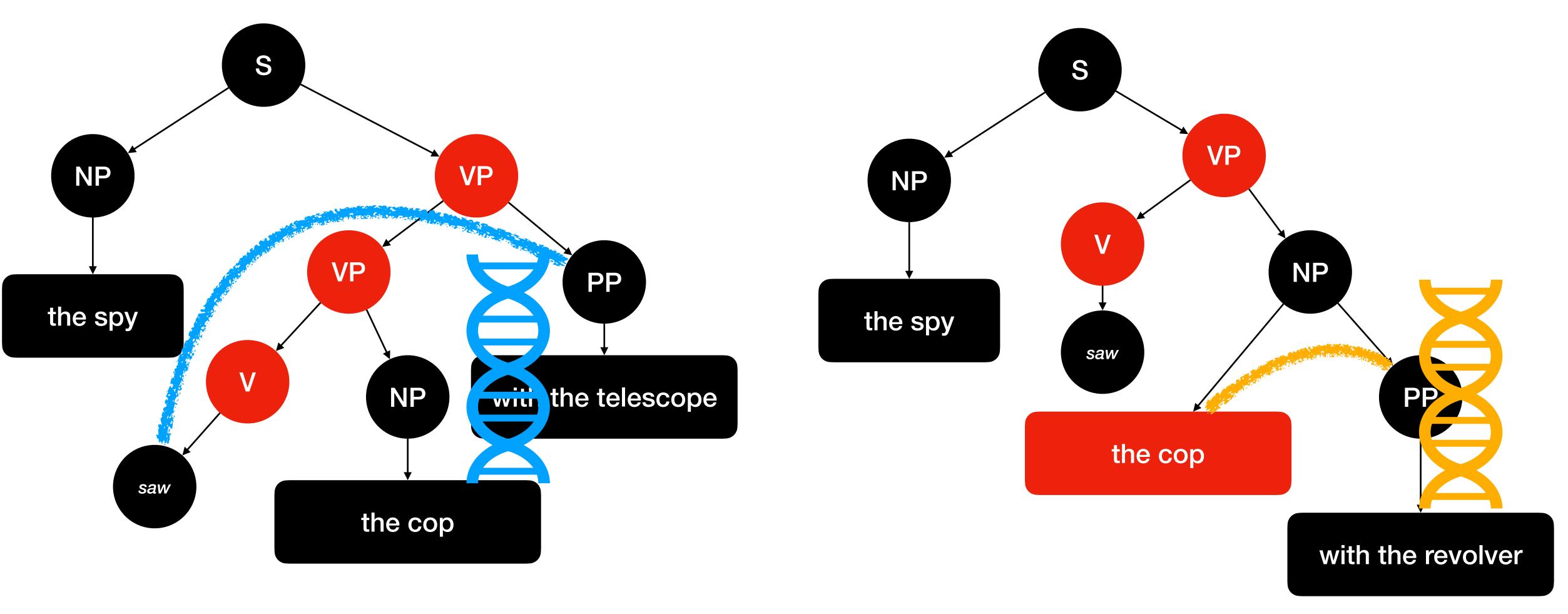
Independent head word and argument word



The spy saw the cop with the telescope.

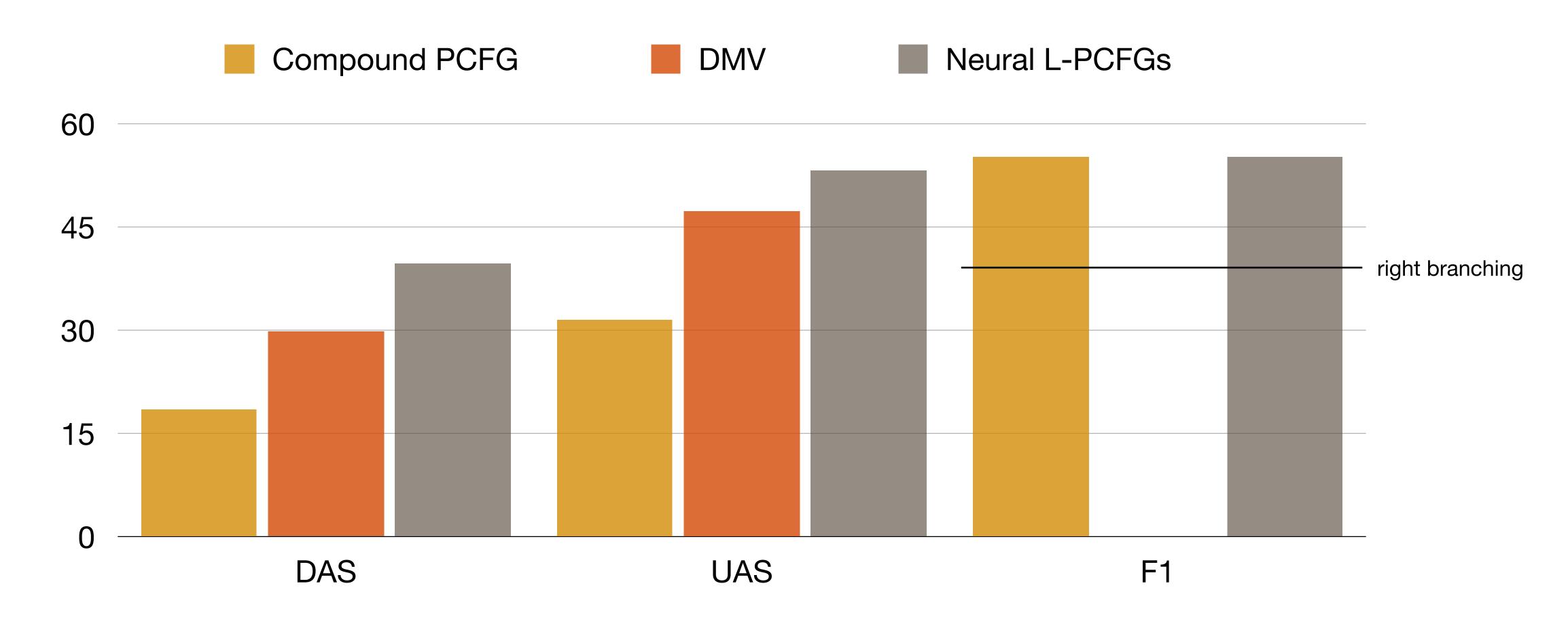
Using a latent compound variable

Conditional independency



The spy saw the cop with the telescope. The spy saw the cop with the revolver.

Results

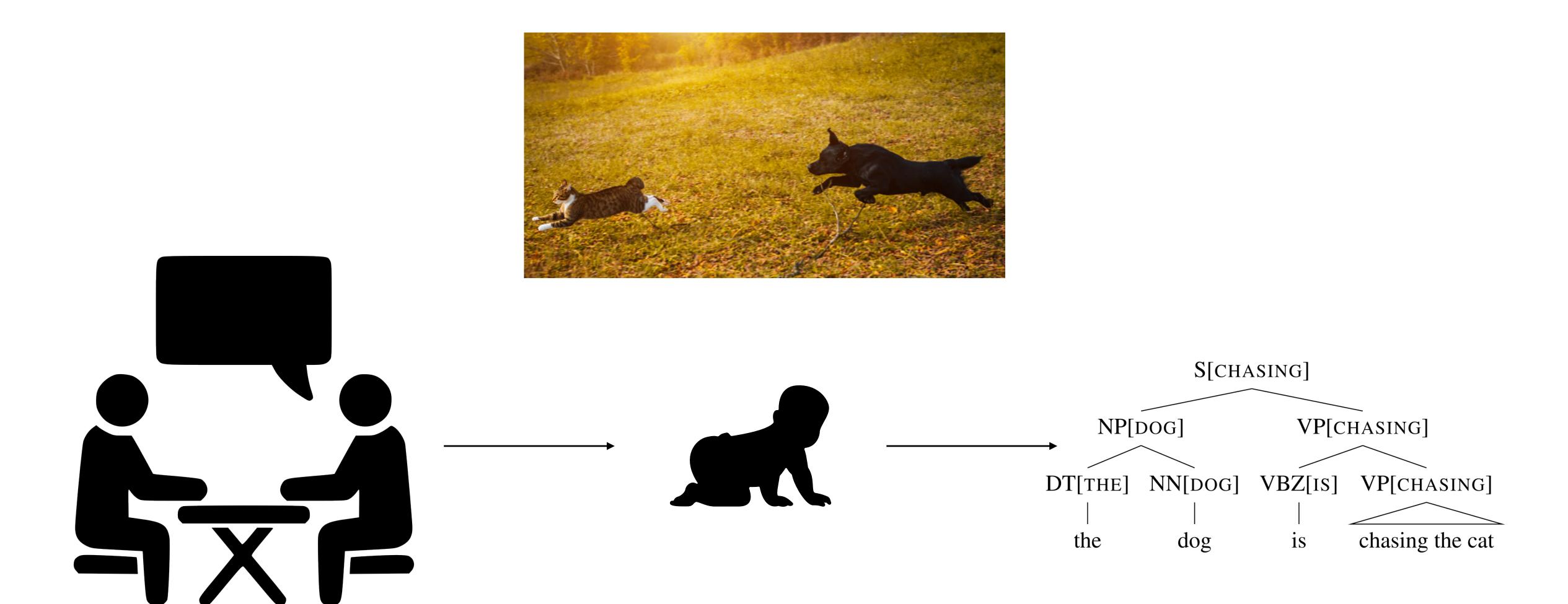


Limitations

• Efficient Bilexical dependency (table assumes enough parallel workers)

	Time complexity	Space Complexity	
Unilexical dependencies	$\mathcal{O}(L)$	$\mathcal{O}(L^3 \mathcal{N} (\mathcal{N} + \mathcal{P})^2)$	
Bilexical Dependencies	$\mathcal{O}(L)$	$\mathcal{O}(L^4 \mathcal{N} (\mathcal{N} + \mathcal{P})^2)$	

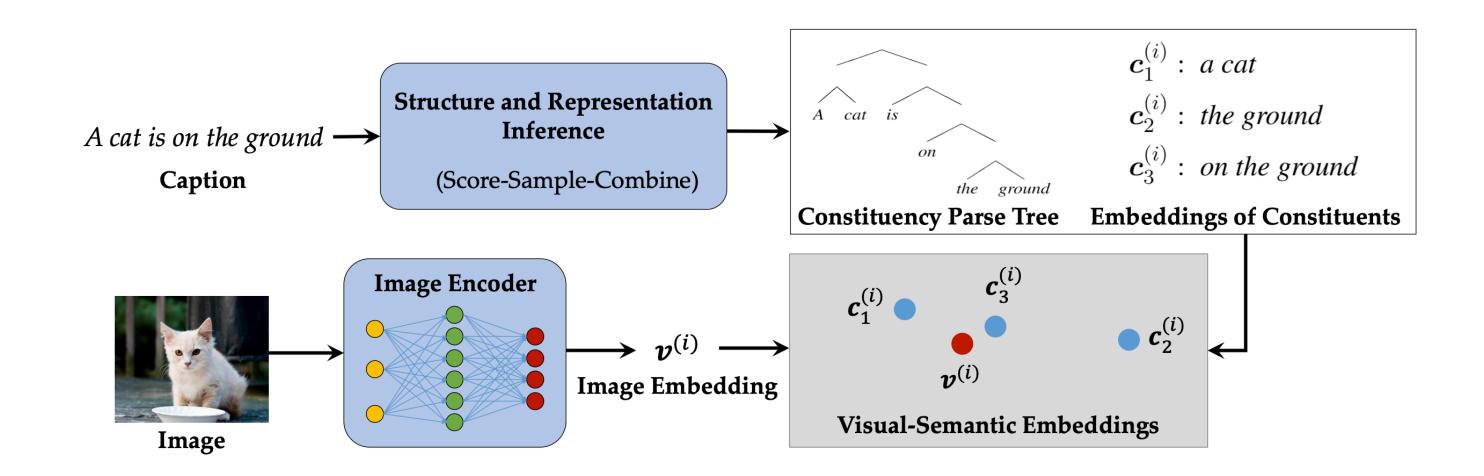
Neural Bi-Lexicalized PCFG Induction.

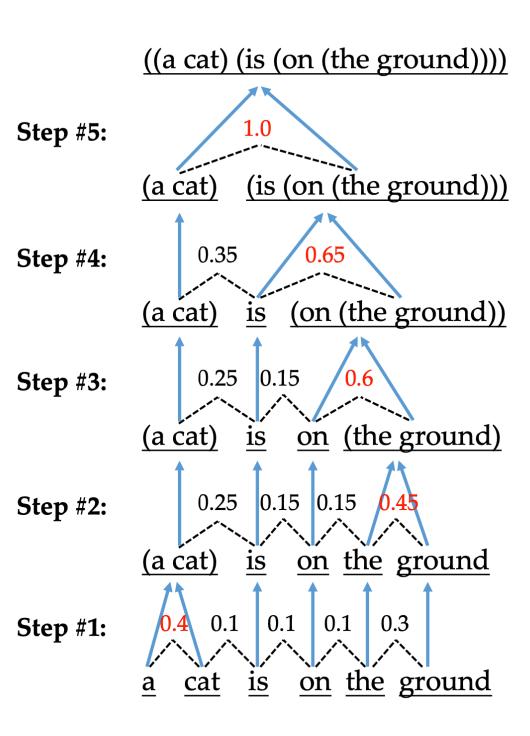


Key to the mystery: visual prior?

Visual Prior Grammar Induction

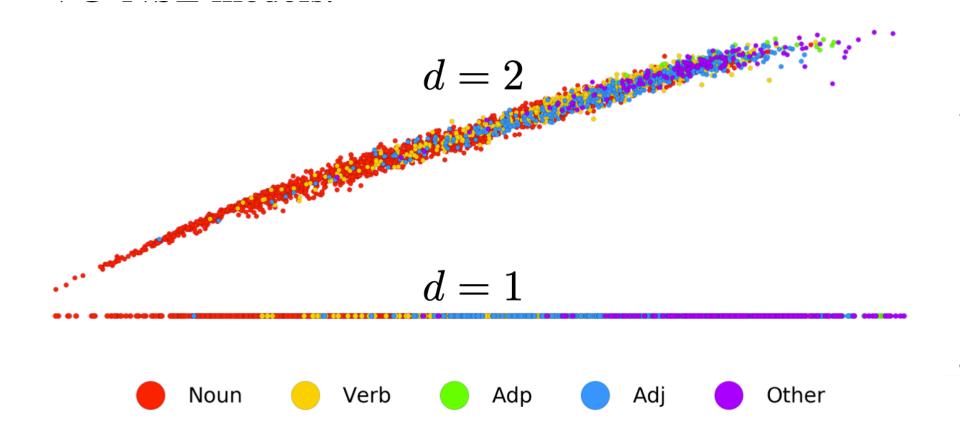
Visual grounded neural syntax acquisition





Visual Prior Grammar Induction

- Visual grounded neural syntax acquisition
 - Similar results even if the dimension of embeddings get shrunk to 1 or 2.
 - embeddings mainly capture POS tags
 - concreteness?



Model	NP	VP	PP	ADJP	Avg. F_1
Shi2019	79.6	26.2	42.0	22.0	50.4 ± 0.3
Shi2019*	80.5	26.9	45.0	21.3	51.4 ± 1.1
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.2	17.0	53.4	18.2	49.7 ± 5.9
$2, s_{\rm WS}, c_{\rm ME}$	80.8	19.1	52.3	17.1	51.6 ± 0.6
+HI					
Shi2019	74.6	32.5	66.5	21.7	53.3 ± 0.2
Shi2019*	73.1	33.9	64.5	22.5	51.8 ± 0.3
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	74.0	35.2	62.0	24.2	51.8 ± 0.4
$2, s_{\rm WS}, c_{\rm ME}$	73.8	30.2	63.7	21.9	51.3 ± 0.1
+HI+FastText					
Shi2019	78.8	24.4	65.6	22.0	54.4 ± 0.3
Shi2019*	77.3	23.9	64.3	21.9	53.3 ± 0.1
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	76.6	21.9	68.7	20.6	53.5 ± 1.4
$2, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.5	22.8	66.3	19.3	53.6 ± 0.2
+HI+FastText-IN					
Shi2019*	78.3	26.6	67.5	22.1	54.9 ± 0.1
$1, \mathrm{s_M}, \mathrm{c_{MX}}$	79.6	29.0	38.3	23.5	49.7 ± 0.2
$1, \mathrm{s_{MHI}}, \mathrm{c_{MX}}$	77.6	45.0	72.3	24.3	$\textbf{57.5} \pm \textbf{0.1}$
$1, \mathrm{s_M}, \mathrm{c_{ME}}$	80.0	26.9	62.2	23.2	54.3 ± 0.2
$1, \mathrm{s_{MHI}}, \mathrm{c_{ME}}$	76.5	20.5	63.6	22.7	52.2 ± 0.3
$1, \mathrm{s_{WS}}, \mathrm{c_{ME}}$	77.7	26.3	72.5	22.0	55.5 ± 0.1
$2, s_{\rm WS}, c_{\rm ME}$	78.5	26.3	69.5	21.1	55.2 ± 0.1

Visual Prior Grammar Induction

- Recommend readings
 - Visually Grounded Compound PCFGs.
 - Dependency Induction Through the Lens of Visual Perception

References

- https://nlp.stanford.edu/seminar/details/yoonkim.pdf
- https://www.cs.jhu.edu/~jason/465/