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Four Paradigms of NLP Technical Development

3

■ Feature Engineering

■ Architecture Engineering

■ Objective Engineering

■ Prompt Engineering



Feature Engineering
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■ Paradigm: Fully Supervised Learning (Non-neural Network)

■ Time Period: Most popular through 2015

■ Characteristics:

■ Non-neural machine learning models mainly used

■ Require manually defined feature extraction 


■ Representative Work:

□ Manual features -> linear or kernelized support vector machine (SVM)


□ Manual features -> conditional random fields (CRF)



Architecture Engineering
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■ Paradigm: Fully Supervised Learning (Neural Networks)

■ Time Period: About 2013-2018

■ Characteristics:

□Rely on neural networks


□Do not need to manually define features, but should modify the network 
structure (e.g.: LSTM v.s CNN)


□Sometimes used pre-training of LMs, but often only for shallow features such as 
embeddings

■ Representative Work:

□CNN for Text Classification



Objective Engineering
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■ Paradigm: Pre-train, Fine-tune

■ Time Period: 2017-Now

■ Characteristics:

□Pre-trained LMs (PLMs) used as initialization of full model - both shallow and 

deep features


□Less work on architecture design, but engineer objective functions  


■ Typical Work:

■ BERT → Fine Tuning



Prompt Engineering
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■ Paradigm: Pre-train, Prompt, Predict

■ Date: 2019-Now

■ Characteristic:

□NLP tasks are modeled entirely by relying on LMs


□The tasks of shallow and deep feature extraction, and prediction of the data are all 

given to the LM 


□Engineering of prompts is required


■ Representative Work:

□GPT3



What is Prompting？

□Encouraging a pre-trained model to make particular predictions by 

providing a "prompt" specifying the task to be done.

8



What  is the general workflow of Prompting?
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■ Prompt Addition

■ Answer Prediction

■ Answer-Label Mapping



Prompt Addition
■ Prompt Addition: Given input x, we transform it into prompt x’ through 

two steps:

□Define a template with two slots, one for input [x], and one for the answer [z]


□Fill in the input slot [x]
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Example: Sentiment Classification
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”



Answer Prediction
■ Answer Prediction: Given a prompt, predict the answer [z]

□ Fill in [z]
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Example
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”



Mapping
■ Mapping: Given an answer, map it into a class label

14



Example
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping: fantastic => Positive



Types of Prompts
■ Prompt: I love this movie. Overall it was a [z] movie 

■ Filled Prompt: I love this movie. Overall it was a boring movie


■ Answered Prompt: I love this movie. Overall it was a fantastic movie 

■ Prefix Prompt: I love this movie. Overall this movie is [z]


■ Cloze Prompt: I love this movie. Overall it was a [z] movie
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Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Pre-trained Language Models
Popular Frameworks


■ Left-to-Right LM

■ Masked LM

■ Prefix LM

■ Encoder-decoder
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Left-to-right Language Model
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■ Characteristics:

□ First proposed by Markov (1913)


□ Count-based-> Neural network-based


□ Specifically suitable to highly larger-scale LMs


■ Example:GPT-1,GPT-2,GPT-3 


■ Roles in Prompting Methods

□ The earliest architecture chosen for prompting


□ Usually equipped with prefix prompt and the parameters of PLMs are fixed



Masked Language Model
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■ Characteristics:
□ Unidirectional -> bidirectional prediction


□ Suitable for NLU tasks


■ Example:

□ BERT, ERNIE


■ Roles in Prompting Methods

□ Usually combined with cloze prompt


□ Suitable for NLU tasks, which should be reformulated into a cloze task



Prefix Language Model
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■ Characteristics:

□ A combination of Masked & Left-to-right


□ Use a Transformer but two different mask mechanisms to 

handle text X and y separately


□ Corruption operations can be introduced when encoding X


■ Examples:

□ UniLM 1,2, ERNIE-M



Encoder-Decoder
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■ Characteristics:

□ A denoised auto-encoder


□ Use two Transformers and two different mask mechanisms 

to handle text X and y separately


□ Corruption operations can be introduced when encoding X


■ Examples:

□ BART, T5



Encoder-decoder Pre-training Methods
Representative Methods


■ MASS

■ BART (mBART)

■ UniLM

■ T5
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MASS 
（Song et al.）

• Model: Transformer-based Encoder-decoder


• Objective: only predict masked spans


• Data: WebText



BART 
(Lewis et al.)

• Model: Transformer-based encoder-decoder model


• Objective: Re-construct (corrupted) original 
sentences


• Data: similar to RoBERTa (160GB): BookCorpus, CC-
NEWs, WebText, Stories

Different CorruptionFramework



mBART(Liu et al.)

• Model: Transformer-based Multi-lingual Denoising 
auto-encoder


• Objective: Re-construct (corrupted) original 
sentences


• Data: CC25 Corpus (25 langauges)



UNiLM 
（Dong et al.）

• Model: prefixed-LM, left-to-right LM, Masked LM


• Objective: three types of LMs, shared parameters


• Data: English Wikipedia and BookCorpus



T5 
( Raffel et al.)

• Model: left-to-right LM, Prefixed LM, encoder-decoder


• Objective: explore different objectives respectively


• Data: C4 (750G) + Wikipedia + RealNews + WebText



T5 
( Raffel et al.)

• Model: left-to-right LM, Prefix LM, encode-decoder


• Objective: explore different objectives respectively


• Data: C4 (750G) + Wikipedia + RealNews + WebText



Application of Prefix LM/Encoder-Decoders in Prompting
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■ Conditional Text Generation

□ Translation


□ Text Summarization


■ Generation-like Tasks

□ Information Extraction


□ Question Answering



Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Traditional Formulation V.S Prompt Formulation
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label): 

fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive



Traditional Formulation V.S Prompt Formulation
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label): 

fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive

How to define a 
suitable prompt 

template?



Prompt Template Engineering
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How to search for 
appropriate prompt 
templates?

How to define the 
shape of a prompt 
template?



Prompt Shape
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■ Cloze Prompt

□ prompt with a slot [z] to fill in the 

middle of the text as a cloze prompt,


■ Prefix Prompt

□ prompt where the input text comes 

entirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]



Design of Prompt Templates
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■ Hand-crafted

□ Configure the manual template based on the characteristics of the task


■ Automated search

□ Search in discrete space


□ Search in continuous space



Representative Methods for Prompt Search
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■ Prompt Mining

■ Prompt Paraphrasing

■ Gradient-based Search

■ Prompt/Prefix Tuning



Prompt Mining (Jiang et al. 2019)
• Mine prompts given a set of questions/answers

• Middle-word


	 Barack Obama was born in Hawaii. ! [X] was born in [Y].

• Dependency-based


	 The capital of France is Paris. ! capital of [X] is [Y].
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Prompt Paraphrasing (Jiang et al. 2019)
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• Paraphrase an existing prompt to get other candidates

• e.g. back translation with beam search

[X] shares a border with [Y]. en-de 
model

de-en 
model

[X] has a common border with [Y].

[X] adjoins [Y].


……



Gradient-based Search (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing words
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Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

• Optimize the 
embeddings of a 
prompt, instead of the 
words. 


• "Prompt Tuning" 
optimizes only the 
embedding layer, "Prefix 
Tuning" optimizes prefix 
of all layers
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Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Answer Engineering
■ Why do we need answer 

engineering?

□ We have reformulate the task!  We also 

should re-define the “ground truth labels”
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Traditional Formulation V.S Prompt Formulation
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Input:  x = “I love this movie”

Template:  [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it 
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it 
was a fantastic movie.”

Mapping (answer -> label): 

fantastic => Positive

Input:  x = “I love this movie”

Predicting:  y = Positive



Traditional Formulation V.S Prompt Formulation

47

Positive

Negative

Label Space (Y)

Interesting

Fantastic


Happy

Boring

1-star


…

Answer Space (Z)



Answer Engineering
■ Why do we need answer 

engineering?

□ We have reformulate the task!  We also 

should re-define the “ground truth labels”


■ Definition:

□ aims to search for an answer space and a 

map to the original output Y that results in 

an effective predictive model
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Design of Prompt Answer
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How to define the 
shape of an answer?

How to search for 
appropriate answers?



Answer Shape
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■ Token: Answers can be one or more tokens in the pre-trained 
language model vocabulary 


■ Chunk: Answers can be chunks of words made up of more than 
one tokens

□ Usually used with cloze prompt


■ Sentence: Answers can be a sentence of arbitrary length

□ Usually used with prefix prompt



Answer Shape

51

token

Token or span

sentences



Answer Search
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■ Hand-crafted

□ Infinite answer space


□ Finite answer space


■ Automated Search

□ Discrete Space


□ Continuous Space



Discrete Search Space
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■ Answer Paraphrasing

□ start with an initial answer space, 


□ then use paraphrasing to expand this answer space 


■ Prune-then-Search

□ an initial pruned answer space of several plausible answers is generated


□ an algorithm further searches over this pruned space to select a final set of answers


■ Label Decomposition

□ decompose each relation label into its constituent words and use them as an answer


■ city_of_death => {person, city, death}



Continuous Search Space
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■ Core idea: assign a virtual token for each class label and optimize 
the token embedding for each label



Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Multi-Prompt Learning
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Single Prompt Multiple Prompts



Multi-Prompt Learning
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Single Prompt Multiple Prompts

Prompt Ensemble

Prompt Augmentation

Prompt Sharing

Prompt Composition

Prompt 
Decomposition



Prompt Ensembling
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■ Definition

□ using multiple unanswered prompts for an input at 

inference time to make predictions


■ Advantages

□ Utilize complementary advantages


□ Alleviate the cost of prompt engineering


□ Stabilize performance on downstream tasks



Prompt Ensembling
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■ Typical Methods

□ Uniform Averaging


□ Weighted Averaging


□ Majority Voting



Prompt Augmentation
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■ Definition

□ Help the model answer the prompt that is currently 

being answered by additional answered prompts  


■ Advantage

□ make use of the small amount of information that 

has been annotated


■ Core step

□ Selection of answered prompts


□ Ordering of answered prompts



Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies
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Prompt-based Training Strategies
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■ Data Perspective

□ How many training samples are used?


■ Parameter Perspective

□ Whether/How are parameters updated?



Prompt-based Training: Data Perspective
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□Zero-shot: without any explicit training of the LM for the downstream 
task


□Few-shot: few training samples (e.g., 1-100) of downstream tasks


□Full-data: lots of training samples (e.g., 10K) of downstream tasks



Prompt-based Training: Parameter Perspective
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Strategy LM Params 
Tuned

Additional 
Prompt Params

Prompt Params 
Tuned Examples

Promptless Fine-
Tuning Yes N/A N/A BERT Fine-tuning

Tuning-free 
Prompting No No N/A GPT-3

Fixed-LM Prompt 
Tuning No Yes Yes Prefix Tuning

Fixed-prompt LM 
Tuning Yes No N/A PET

Prompt+LM 
Fine-tuning Yes Yes Yes PADA



Too many, difficult to select?
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Promptless Fine-tuning
Fixed-prompt Tuning
Prompt+LM Fine-tuning

Tuning-free Prompting
Fixed-LM Prompt Tuning

If you have a huge pre-trained 
language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?



Questions?


