
CS11-711 Advanced NLP

Prompting 
(+ Encoder-Decoder Pre-training)

Graham Neubig

Site
https://phontron.com/class/anlp2021/

Most Slides by Pengfei Liu

https://phontron.com/class/anlp2021/

Recommended Reading:

2

Four Paradigms of NLP Technical Development

3

■ Feature Engineering

■ Architecture Engineering

■ Objective Engineering

■ Prompt Engineering

Feature Engineering

4

■ Paradigm: Fully Supervised Learning (Non-neural Network)

■ Time Period: Most popular through 2015

■ Characteristics:

■ Non-neural machine learning models mainly used

■ Require manually defined feature extraction

■ Representative Work:

□ Manual features -> linear or kernelized support vector machine (SVM)

□ Manual features -> conditional random fields (CRF)

Architecture Engineering

5

■ Paradigm: Fully Supervised Learning (Neural Networks)

■ Time Period: About 2013-2018

■ Characteristics:

□Rely on neural networks

□Do not need to manually define features, but should modify the network
structure (e.g.: LSTM v.s CNN)

□Sometimes used pre-training of LMs, but often only for shallow features such as
embeddings

■ Representative Work:

□CNN for Text Classification

Objective Engineering

6

■ Paradigm: Pre-train, Fine-tune

■ Time Period: 2017-Now

■ Characteristics:

□Pre-trained LMs (PLMs) used as initialization of full model - both shallow and

deep features

□Less work on architecture design, but engineer objective functions

■ Typical Work:

■ BERT → Fine Tuning

Prompt Engineering

7

■ Paradigm: Pre-train, Prompt, Predict

■ Date: 2019-Now

■ Characteristic:

□NLP tasks are modeled entirely by relying on LMs

□The tasks of shallow and deep feature extraction, and prediction of the data are all

given to the LM

□Engineering of prompts is required

■ Representative Work:

□GPT3

What is Prompting？

□Encouraging a pre-trained model to make particular predictions by

providing a "prompt" specifying the task to be done.

8

What is the general workflow of Prompting?

9

■ Prompt Addition

■ Answer Prediction

■ Answer-Label Mapping

Prompt Addition
■ Prompt Addition: Given input x, we transform it into prompt x’ through

two steps:

□Define a template with two slots, one for input [x], and one for the answer [z]

□Fill in the input slot [x]

10

Example: Sentiment Classification

11

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Answer Prediction
■ Answer Prediction: Given a prompt, predict the answer [z]

□ Fill in [z]

12

Example

13

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping
■ Mapping: Given an answer, map it into a class label

14

Example

15

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping: fantastic => Positive

Types of Prompts
■ Prompt: I love this movie. Overall it was a [z] movie 

■ Filled Prompt: I love this movie. Overall it was a boring movie

■ Answered Prompt: I love this movie. Overall it was a fantastic movie 

■ Prefix Prompt: I love this movie. Overall this movie is [z]

■ Cloze Prompt: I love this movie. Overall it was a [z] movie

16

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

17

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

18

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

19

Pre-trained Language Models
Popular Frameworks

■ Left-to-Right LM

■ Masked LM

■ Prefix LM

■ Encoder-decoder

20

Left-to-right Language Model

21

■ Characteristics:

□ First proposed by Markov (1913)

□ Count-based-> Neural network-based

□ Specifically suitable to highly larger-scale LMs

■ Example:GPT-1,GPT-2,GPT-3

■ Roles in Prompting Methods

□ The earliest architecture chosen for prompting

□ Usually equipped with prefix prompt and the parameters of PLMs are fixed

Masked Language Model

22

■ Characteristics:
□ Unidirectional -> bidirectional prediction

□ Suitable for NLU tasks

■ Example:

□ BERT, ERNIE

■ Roles in Prompting Methods

□ Usually combined with cloze prompt

□ Suitable for NLU tasks, which should be reformulated into a cloze task

Prefix Language Model

23

■ Characteristics:

□ A combination of Masked & Left-to-right

□ Use a Transformer but two different mask mechanisms to

handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples:

□ UniLM 1,2, ERNIE-M

Encoder-Decoder

24

■ Characteristics:

□ A denoised auto-encoder

□ Use two Transformers and two different mask mechanisms

to handle text X and y separately

□ Corruption operations can be introduced when encoding X

■ Examples:

□ BART, T5

Encoder-decoder Pre-training Methods
Representative Methods

■ MASS

■ BART (mBART)

■ UniLM

■ T5

25

MASS 
（Song et al.）

• Model: Transformer-based Encoder-decoder

• Objective: only predict masked spans

• Data: WebText

BART 
(Lewis et al.)

• Model: Transformer-based encoder-decoder model

• Objective: Re-construct (corrupted) original
sentences

• Data: similar to RoBERTa (160GB): BookCorpus, CC-
NEWs, WebText, Stories

Different CorruptionFramework

mBART(Liu et al.)

• Model: Transformer-based Multi-lingual Denoising
auto-encoder

• Objective: Re-construct (corrupted) original
sentences

• Data: CC25 Corpus (25 langauges)

UNiLM 
（Dong et al.）

• Model: prefixed-LM, left-to-right LM, Masked LM

• Objective: three types of LMs, shared parameters

• Data: English Wikipedia and BookCorpus

T5 
(Raffel et al.)

• Model: left-to-right LM, Prefixed LM, encoder-decoder

• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

T5 
(Raffel et al.)

• Model: left-to-right LM, Prefix LM, encode-decoder

• Objective: explore different objectives respectively

• Data: C4 (750G) + Wikipedia + RealNews + WebText

Application of Prefix LM/Encoder-Decoders in Prompting

32

■ Conditional Text Generation

□ Translation

□ Text Summarization

■ Generation-like Tasks

□ Information Extraction

□ Question Answering

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

33

Traditional Formulation V.S Prompt Formulation

34

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):

fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

Traditional Formulation V.S Prompt Formulation

35

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):

fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

How to define a
suitable prompt

template?

Prompt Template Engineering

36

How to search for
appropriate prompt
templates?

How to define the
shape of a prompt
template?

Prompt Shape

37

■ Cloze Prompt

□ prompt with a slot [z] to fill in the

middle of the text as a cloze prompt,

■ Prefix Prompt

□ prompt where the input text comes

entirely before slot [z]

I love this movie. Overall it was a [z] movie

I love this movie. Overall this movie is [z]

Design of Prompt Templates

38

■ Hand-crafted

□ Configure the manual template based on the characteristics of the task

■ Automated search

□ Search in discrete space

□ Search in continuous space

Representative Methods for Prompt Search

39

■ Prompt Mining

■ Prompt Paraphrasing

■ Gradient-based Search

■ Prompt/Prefix Tuning

Prompt Mining (Jiang et al. 2019)
• Mine prompts given a set of questions/answers

• Middle-word

	 Barack Obama was born in Hawaii. ! [X] was born in [Y].

• Dependency-based

	 The capital of France is Paris. ! capital of [X] is [Y].

40

Prompt Paraphrasing (Jiang et al. 2019)

41

• Paraphrase an existing prompt to get other candidates

• e.g. back translation with beam search

[X] shares a border with [Y]. en-de
model

de-en
model

[X] has a common border with [Y].

[X] adjoins [Y].

……

Gradient-based Search (Shin et al. 2020)

• Automatically optimize arbitrary prompts based on existing words

42

Prefix/Prompt Tuning (Li and Liang 2021, Lester et al. 2021)

• Optimize the
embeddings of a
prompt, instead of the
words.

• "Prompt Tuning"
optimizes only the
embedding layer, "Prefix
Tuning" optimizes prefix
of all layers

43

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

44

Answer Engineering
■ Why do we need answer

engineering?

□ We have reformulate the task! We also

should re-define the “ground truth labels”

45

Traditional Formulation V.S Prompt Formulation

46

Input: x = “I love this movie”

Template: [x] Overall, it was a [z] movie

Prompting: x’ = “I love this movie. Overall it
was a [z] movie.”

Predicting: x’ = “I love this movie. Overall it
was a fantastic movie.”

Mapping (answer -> label):

fantastic => Positive

Input: x = “I love this movie”

Predicting: y = Positive

Traditional Formulation V.S Prompt Formulation

47

Positive

Negative

Label Space (Y)

Interesting

Fantastic

Happy

Boring

1-star

…

Answer Space (Z)

Answer Engineering
■ Why do we need answer

engineering?

□ We have reformulate the task! We also

should re-define the “ground truth labels”

■ Definition:

□ aims to search for an answer space and a

map to the original output Y that results in

an effective predictive model

48

Design of Prompt Answer

49

How to define the
shape of an answer?

How to search for
appropriate answers?

Answer Shape

50

■ Token: Answers can be one or more tokens in the pre-trained
language model vocabulary

■ Chunk: Answers can be chunks of words made up of more than
one tokens

□ Usually used with cloze prompt

■ Sentence: Answers can be a sentence of arbitrary length

□ Usually used with prefix prompt

Answer Shape

51

token

Token or span

sentences

Answer Search

52

■ Hand-crafted

□ Infinite answer space

□ Finite answer space

■ Automated Search

□ Discrete Space

□ Continuous Space

Discrete Search Space

53

■ Answer Paraphrasing

□ start with an initial answer space,

□ then use paraphrasing to expand this answer space

■ Prune-then-Search

□ an initial pruned answer space of several plausible answers is generated

□ an algorithm further searches over this pruned space to select a final set of answers

■ Label Decomposition

□ decompose each relation label into its constituent words and use them as an answer

■ city_of_death => {person, city, death}

Continuous Search Space

54

■ Core idea: assign a virtual token for each class label and optimize
the token embedding for each label

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

55

Multi-Prompt Learning

56

Single Prompt Multiple Prompts

Multi-Prompt Learning

57

Single Prompt Multiple Prompts

Prompt Ensemble

Prompt Augmentation

Prompt Sharing

Prompt Composition

Prompt
Decomposition

Prompt Ensembling

58

■ Definition

□ using multiple unanswered prompts for an input at

inference time to make predictions

■ Advantages

□ Utilize complementary advantages

□ Alleviate the cost of prompt engineering

□ Stabilize performance on downstream tasks

Prompt Ensembling

59

■ Typical Methods

□ Uniform Averaging

□ Weighted Averaging

□ Majority Voting

Prompt Augmentation

60

■ Definition

□ Help the model answer the prompt that is currently

being answered by additional answered prompts

■ Advantage

□ make use of the small amount of information that

has been annotated

■ Core step

□ Selection of answered prompts

□ Ordering of answered prompts

Design Considerations for Prompting
■ Pre-trained Model Choice

■ Prompt Template Engineering

■ Answer Engineering

■ Expanding the Paradigm

■ Prompt-based Training Strategies

61

Prompt-based Training Strategies

62

■ Data Perspective

□ How many training samples are used?

■ Parameter Perspective

□ Whether/How are parameters updated?

Prompt-based Training: Data Perspective

63

□Zero-shot: without any explicit training of the LM for the downstream
task

□Few-shot: few training samples (e.g., 1-100) of downstream tasks

□Full-data: lots of training samples (e.g., 10K) of downstream tasks

Prompt-based Training: Parameter Perspective

64

Strategy LM Params
Tuned

Additional
Prompt Params

Prompt Params
Tuned Examples

Promptless Fine-
Tuning Yes N/A N/A BERT Fine-tuning

Tuning-free
Prompting No No N/A GPT-3

Fixed-LM Prompt
Tuning No Yes Yes Prefix Tuning

Fixed-prompt LM
Tuning Yes No N/A PET

Prompt+LM 
Fine-tuning Yes Yes Yes PADA

Too many, difficult to select?

65

Promptless Fine-tuning
Fixed-prompt Tuning
Prompt+LM Fine-tuning

Tuning-free Prompting
Fixed-LM Prompt Tuning

If you have a huge pre-trained
language model (e.g., GPT3)

If you have few training samples?

If you have lots of training samples?

Questions?

